http://iet.metastore.ingenta.com
1887

Image feature extraction algorithm based on CUDA architecture: case study GFD and GCFD

Image feature extraction algorithm based on CUDA architecture: case study GFD and GCFD

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computers & Digital Techniques — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Optimising computing times of applications is an increasingly important task in many different areas such as scientific and industrial applications. Graphics processing unit (GPU) is considered as one of the powerful engines for computationally demanding applications since it proposes a highly parallel architecture. In this context, the authors introduce an algorithm to optimise the computing time of feature extraction methods for the colour image. They choose generalised Fourier descriptor (GFD) and generalised colour Fourier descriptor (GCFD) models, as a method to extract the image feature for various applications such as colour object recognition in real-time or image retrieval. They compare the computing time experimental results on central processing unit and GPU. They also present a case study of these experimental results descriptors using two platforms: a NVIDIA GeForce GT525M and a NVIDIA GeForce GTX480. Their experimental results demonstrate that the execution time can considerably be reduced until 34× for GFD and 56× for GCFD.

References

    1. 1)
      • A.D. Pereira , L. Ramos , L. GÓES .
        1. Pereira, A.D., Ramos, L., GÓES, L.: ‘PSkel: a stencil programming framework for CPU-GPU systems’, Concurrency Comput. Pract. Exp., 2015, 27, (17), pp. 49384953.
        . Concurrency Comput. Pract. Exp. , 17 , 4938 - 4953
    2. 2)
      • (2014)
        2. NVIDIA Corporation: ‘NVIDIA CUDA_6.5_Performance_Report Version 6.5’ (NVIDIA, 2014), pp. 130.
        .
    3. 3)
      • F. Smach , J. Miteran , M. Atri .
        3. Smach, F., Miteran, J., Atri, M., et al: ‘An FPGA-based accelerator for Fourier descriptors computing for color object recognition using SVM’, J. Real-Time Image Process., 2007, 2, (4), pp. 249258.
        . J. Real-Time Image Process. , 4 , 249 - 258
    4. 4)
      • T. Batard , M. Berthier , C. Saint-Jean . (2010)
        4. Batard, T., Berthier, M., Saint-Jean, C.: ‘Clifford–Fourier transform for color image processing’, in (EDs.): ‘Geometric algebra computing’ (Springer-Verlag London Press, 2010, 1st edn.), pp. 135162.
        .
    5. 5)
      • J. Mennesson , C. Saint-Jean , L. Mascarilla . (2011)
        5. Mennesson, J., Saint-Jean, C., Mascarilla, L.: ‘Color object recognition based on a Clifford–Fourier transform’, in (EDs.): ‘Guide to geometric algebra in practice’ (Springer-Verlag London Press, 2011, 1st edn.), pp. 175191.
        .
    6. 6)
      • H. Mohamed , A. Mohamed , F. Smach .
        6. Mohamed, H., Mohamed, A., Smach, F.: ‘Hardware implementation of GCFD for color images recognition’. 2014 World Congress Computer Applications and Information Systems, January 2014, pp. 15.
        . 2014 World Congress Computer Applications and Information Systems , 1 - 5
    7. 7)
      • B. Haythem , H. Mohamed , C. Marwa .
        7. Haythem, B., Mohamed, H., Marwa, C., et al: ‘Fast generalized Fourier descriptor for object recognition of image using CUDA’. 2014 World Symp. Computer Applications and Research, January 2014, pp. 15.
        . 2014 World Symp. Computer Applications and Research , 1 - 5
    8. 8)
      • (2014)
        8. NVIDIA Corporation: ‘CUFFT LIBRARY USER'S GUIDE version 6.5’ (NVIDIA, 2014), pp. 176.
        .
    9. 9)
      • B. Haythem , S. Fatma , C. Marwa .
        9. Haythem, B., Fatma, S., Marwa, C., et al: ‘Accelerating Fourier descriptor for image recognition using GPU’, Appl. Math. Inf. Sci., 2016, 10, (1), pp. 297306.
        . Appl. Math. Inf. Sci. , 1 , 297 - 306
    10. 10)
      • M. Chouchene , F.E. Sayadi , H. Bahri .
        10. Chouchene, M., Sayadi, F.E., Bahri, H., et al: ‘Optimized parallel implementation of face detection based on GPU component’, Microprocess. Microsyst.., 2015, 39, (6), pp. 393404.
        . Microprocess. Microsyst.. , 6 , 393 - 404
    11. 11)
      • D. Zhang , G. Lul .
        11. Zhang, D., Lul, G.: ‘Shape based image retrieval using generic Fourier descriptor’, Signal Process., Image Commun., 2002, 17, (10), pp. 825848.
        . Signal Process., Image Commun. , 10 , 825 - 848
    12. 12)
      • (2014)
        12. NVIDIA Corporation: ‘CUDA C PROGRAMMING GUIDE version 6.5’ (NVIDIA, 2014), pp. 1241.
        .
    13. 13)
      • 13. CUDA Occupancy Calculator. Available at http://www.developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls, accessed 14 November 2016.
        .
    14. 14)
      • (2014)
        14. NVIDIA Corporation: ‘Profiler user's guide’ (NVIDIA, 2014), pp. 187.
        .
    15. 15)
      • F. Smach .
        15. Smach, F.: ‘Etude et implantation FPGA des descripteurs de Fourier généralisés combinés aux SVM’. PhD thesis, Burgundy University, 2007.
        . PhD thesis
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cdt.2016.0135
Loading

Related content

content/journals/10.1049/iet-cdt.2016.0135
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address