http://iet.metastore.ingenta.com
1887

Finite state machine-based fault tolerance technique with enhanced area and power of synthesised sequential circuits

Finite state machine-based fault tolerance technique with enhanced area and power of synthesised sequential circuits

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computers & Digital Techniques — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Recently, a finite state machine-based fault tolerance technique for sequential circuits based on protecting few states with high probability of occurrence has been proposed. In this study, the authors propose an algorithm that starts with a given state assignment targeting the optimisation of either area or power and generates a state assignment that preserves the original state assignment and satisfies the fault tolerance requirements for the protected states. Experimental results demonstrate the effectiveness of the proposed algorithm in significantly reducing the area and power of synthesised sequential circuits while enhancing their fault tolerance.

References

    1. 1)
      • V. Ferlet-Cavrois , L.W. Massengill , P. Gouker .
        1. Ferlet-Cavrois, V., Massengill, L.W., Gouker, P.: ‘Single event transients in digital CMOS: a review’, IEEE Trans. Nucl. Sci., 2013, 60, (3), pp. 17671790.
        . IEEE Trans. Nucl. Sci. , 3 , 1767 - 1790
    2. 2)
      • A. Dixit , A. Wood .
        2. Dixit, A., Wood, A.: ‘The impact of new technology on soft error rates’. Proc. Int. Reliability Physics Symp., Monterey, CA, April 2011, pp. 5B.4.15B.4.7.
        . Proc. Int. Reliability Physics Symp. , 5B.4.1 - 5B.4.7
    3. 3)
      • P. Shivakumar , M. Kistler , S. Keckler .
        3. Shivakumar, P., Kistler, M., Keckler, S., et al: ‘Modeling the effect of technology trends on the soft error rate of combinational logic’. Proc. Int. Conf. on Dependable Systems and Networks, Washington, DC, 2002, pp. 389398.
        . Proc. Int. Conf. on Dependable Systems and Networks , 389 - 398
    4. 4)
      • A.H. El-Maleh , F.C. Oughali .
        5. El-Maleh, A.H., Oughali, F.C.: ‘A generalized modular redundancy scheme for enhancing fault tolerance of combinational circuits’, Microelectron. Reliab., 2014, 54, (1), pp. 316326.
        . Microelectron. Reliab. , 1 , 316 - 326
    5. 5)
      • J. Teifel .
        6. Teifel, J.: ‘Self-voting dual-modular-redundancy circuits for single-event transient mitigation’, IEEE Trans. Nucl. Sci., 2008, 55, (6), pp. 34353439.
        . IEEE Trans. Nucl. Sci. , 6 , 3435 - 3439
    6. 6)
      • A.J. Sanchez-Clemente , L. Entrena , R. Hrbacek .
        7. Sanchez-Clemente, A.J., Entrena, L., Hrbacek, R., et al: ‘Error mitigation using approximate logic circuits: a comparison of probabilistic and evolutionary approaches’, IEEE Trans. Reliab., 2016, accepted.
        . IEEE Trans. Reliab.
    7. 7)
      • S. Lin , Y.-B. Kim , F. Lombardi .
        8. Lin, S., Kim, Y.-B., Lombardi, F.: ‘Soft-error hardening designs of nanoscale CMOS latches’. Proc. 27th IEEE VLSI Test Symp., 2009, pp. 4146.
        . Proc. 27th IEEE VLSI Test Symp. , 41 - 46
    8. 8)
      • I. Polian , J.P. Hayes .
        9. Polian, I., Hayes, J.P.: ‘Selective hardening: toward cost-effective error tolerance’, IEEE Des. Test, 2011, 28, pp. 5463.
        . IEEE Des. Test , 54 - 63
    9. 9)
      • M. Cassel , F.L. Kastensmidt .
        10. Cassel, M., Kastensmidt, F.L.: ‘Evaluating one-hot encoding finite state machines for SEU reliability in SRAM-based FPGAs’. Proc. 12th IEEE Int. On-Line Testing Symp., Lake Como, 2006, pp. 139144.
        . Proc. 12th IEEE Int. On-Line Testing Symp. , 139 - 144
    10. 10)
      • C.N. Hadjicostis , G.C. Verghese .
        11. Hadjicostis, C.N., Verghese, G.C.: ‘Coding approaches to fault tolerance in linear dynamic systems’, IEEE Trans. Inf. Theory, 2005, 51, (1), pp. 210228.
        . IEEE Trans. Inf. Theory , 1 , 210 - 228
    11. 11)
      • J. Liang , J. Han , F. Lombardi .
        12. Liang, J., Han, J., Lombardi, F.: ‘Analysis of error masking and restoring properties of sequential circuits’, IEEE Trans. Comput., 2013, 62, (9), pp. 16941704.
        . IEEE Trans. Comput. , 9 , 1694 - 1704
    12. 12)
      • A.H. El-Maleh , A.S. Al-Qahtani .
        13. El-Maleh, A.H., Al-Qahtani, A.S.: ‘A finite state machine based fault tolerance technique for sequential circuits’, Microelectron. Reliab., 2014, 54, (3), pp. 491662.
        . Microelectron. Reliab. , 3 , 491 - 662
    13. 13)
      • A.H. El-Maleh .
        14. El-Maleh, A.H.: ‘Majority-based evolution state assignment algorithm for area and power optimization of sequential circuits’, IET Comput. Digit. Tech., 2016, 10, (1), pp. 3036.
        . IET Comput. Digit. Tech. , 1 , 30 - 36
    14. 14)
      • E.M. Sentovich , K.J. Singh , L. Lavagno .
        15. Sentovich, E.M., Singh, K.J., Lavagno, L., et al: ‘SIS: a system for sequential circuit synthesis’ (EECS Department, University of California, Berkeley). Available at http://www.eecs.berkeley.edu/Pubs/TechRpts/1992/2010.html, accessed 14 June 2016.
        .
    15. 15)
      • 16. Synopsys, SAED_EDK90_CORE – 90 nm Digital Standard Cell Library, SYNOPSYS ARMENIA Educational Department, Databook Revision 1.11, 2011.
        .
    16. 16)
      • 17. http://www.ddd.fit.cvut.cz/prj/Benchmarks/, accessed 14 June 2016.
        .
    17. 17)
      • 18. Predictive Technology Model for Spice. Available at http://www.ptm.asu.edu/, accessed 1 February 2017.
        .
    18. 18)
      • A.H. El-Maleh , K.A.K. Daud .
        19. El-Maleh, A.H., Daud, K.A.K.: ‘Simulation-based method for synthesizing soft error tolerant combinational circuits’, IEEE Trans. Reliab., 2015, 64, (3), pp. 935948.
        . IEEE Trans. Reliab. , 3 , 935 - 948
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cdt.2016.0085
Loading

Related content

content/journals/10.1049/iet-cdt.2016.0085
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address