http://iet.metastore.ingenta.com
1887

Fast and accurate circuit delay model for FPGA architectural exploration

Fast and accurate circuit delay model for FPGA architectural exploration

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Computers & Digital Techniques — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Field programmable gate arrays (FPGAs) are adopted in many electronic systems, due to their design flexibility and high performance. For providing right FPGAs for different applications, FPGA architectural exploration is needed. Accurate estimation of area and delay of low-level FPGA circuits is required to evaluate different architecture candidates during the exploration. In this study, the authors present a fast and accurate delay model by extracting the key parameters affecting FPGA delay and by combining the classical Elmore equivalent model and the powerful learning capability of neural network. The derived model can be integrated with the existing FPGA architecture exploration flow perfectly. Experimental results show that compared with circuit simulator tool HSPICE, this model speeds up the delay estimation by 2863 times with the average error of 1.9% during the architectural exploration process. This fast and accurate estimation allows FPGA architects to explore more architectural options in limited time, resulting in optimised FPGA architecture.

References

    1. 1)
      • J. Das , A. Lam , S.J.E. Wilton .
        1. Das, J., Lam, A., Wilton, S.J.E., et al: ‘An analytical model relating FPGA architecture to logic density and depth’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2011, 19, (12), pp. 22292242.
        . IEEE Trans. Very Large Scale Integr. (VLSI) Syst. , 12 , 2229 - 2242
    2. 2)
      • D. Lewis , D. Cashman , M. Chan .
        2. Lewis, D., Cashman, D., Chan, M., et al: ‘Architectural enhancements in Stratix V’. FPGA '13 Proc. of the ACM/SIGDA Int. Symp. on Field Programmable Gate Arrays, New York, NY, USA, 2013, pp. 147156, ACM.
        . FPGA '13 Proc. of the ACM/SIGDA Int. Symp. on Field Programmable Gate Arrays , 147 - 156
    3. 3)
      • A.M. Smith , G.A. Constantinides , P.Y.K. Cheung .
        3. Smith, A.M., Constantinides, G.A., Cheung, P.Y.K.: ‘FPGA architecture optimization using geometric programming’, IEEE Trans. Comput.-Aided Design Integr. Circuits Systems, 2010, 29, (8), pp. 11631176.
        . IEEE Trans. Comput.-Aided Design Integr. Circuits Systems , 8 , 1163 - 1176
    4. 4)
      • Z. Jiang , C.Y. Lin , L. Yang .
        4. Jiang, Z., Lin, C.Y., Yang, L., et al: ‘Exploring architecture parameters for dual-output LUT based FPGAs’. 2014 24th Int. Conf. on Field Programmable Logic and Applications (FPL), 24 September 2014, pp. 16.
        . 2014 24th Int. Conf. on Field Programmable Logic and Applications (FPL) , 1 - 6
    5. 5)
      • V. Betz , J. Rose , A. Marquardt . (1999)
        5. Betz, V., Rose, J., Marquardt, A.: ‘Architecture and CAD for deep-submicron FPGAs’ (Kluwer, 1999).
        .
    6. 6)
      • M. Lin , J. Wawrzynek , A. El Gamal .
        6. Lin, M., Wawrzynek, J., El Gamal, A.: ‘Exploring FPGA routing architecture stochastically’, IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., 2010, 29, (10), pp. 15091522.
        . IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. , 10 , 1509 - 1522
    7. 7)
      • S.R. Omam , X. Tang , P.E. Gaillardon .
        7. Omam, S.R., Tang, X., Gaillardon, P.E., et al: ‘A study on buffer distribution for RRAM-based FPGA routing structures’. 2015 IEEE 6th Latin American Symp. on Circuits and Systems (LASCAS), Montevideo, 2015, pp. 14.
        . 2015 IEEE 6th Latin American Symp. on Circuits and Systems (LASCAS) , 1 - 4
    8. 8)
      • E. Hung , S.J.E. Wilton , H. Yu .
        8. Hung, E., Wilton, S.J.E., Yu, H., et al: ‘A detailed delay path model for FPGAs’. Int. Conf. on Field-Programmable Technology, 2009. FPT 2009, Sydney, NSW, 2009, pp. 96103.
        . Int. Conf. on Field-Programmable Technology, 2009. FPT 2009 , 96 - 103
    9. 9)
      • C. Chiasson , V. Betz .
        9. Chiasson, C., Betz, V.: ‘COFFE: Fully-automated transistor sizing for FPGAs’. Int. Conf. on Field-Programmable Technology (FPT), 9–11 December 2013, pp. 3441.
        . Int. Conf. on Field-Programmable Technology (FPT) , 34 - 41
    10. 10)
      • I. Kuon , J. Rose .
        10. Kuon, I., Rose, J.: ‘Exploring area and delay tradeoffs in FPGAs with architecture and automated transistor design’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2011, 19, (1), pp. 7184.
        . IEEE Trans. Very Large Scale Integr. (VLSI) Syst. , 1 , 71 - 84
    11. 11)
      • J.E. Rayas-Sanchez , Q.J. Zhang .
        11. Rayas-Sanchez, J.E., Zhang, Q.J.: ‘On knowledge-based neural networks and neuro-space mapping’. 2012 IEEE MTT-S Int. Microwave Symp. Digest (MTT), 17–22 June 2012, pp. 13.
        . 2012 IEEE MTT-S Int. Microwave Symp. Digest (MTT) , 1 - 3
    12. 12)
      • D.M. Jwad , P.W. Lefley .
        12. Jwad, D.M., Lefley, P.W.: ‘Evaluation studies of combined wavelet and neural network applications in high voltage transmission line protection’. 12th IET Int. Conf. on Developments in Power System Protection (DPSP 2014), 2014, p. 12.96.
        . 12th IET Int. Conf. on Developments in Power System Protection (DPSP 2014)
    13. 13)
      • B.M. Wilamowski .
        13. Wilamowski, B.M.: ‘Suitability of fuzzy systems and neural networks for industrial applications’. 2012 13th Int. Conference on Optimization of Electrical and Electronic Equipment (OPTIM), 24–26 May 2012, pp. 17.
        . 2012 13th Int. Conference on Optimization of Electrical and Electronic Equipment (OPTIM) , 1 - 7
    14. 14)
      • T. Wang , H. Gao , J. Qiu .
        14. Wang, T., Gao, H., Qiu, J.: ‘A combined adaptive neural network and nonlinear model predictive control for multirate networked industrial process control’, IEEE Trans. Neural Netw. Learn. Syst., 2016, 27, (2), pp. 416425.
        . IEEE Trans. Neural Netw. Learn. Syst. , 2 , 416 - 425
    15. 15)
      • S.A. Alshehri .
        15. Alshehri, S.A.: ‘Neural network technique for image compression’, IET Image Process., 2016, 10, (3), pp. 222226.
        . IET Image Process. , 3 , 222 - 226
    16. 16)
      • J. Luu , I. Kuon , P. Jamieson .
        16. Luu, J., Kuon, I., Jamieson, P., et al: ‘VPR 5.0: FPGA CAD and architecture exploration tools with single-driver routing, heterogeneity and process scaling’. Proc. ACM/SIGDA Int. Symp. Field Program. Gate Arrays, Monterey, CA, USA, 2009, pp. 133142.
        . Proc. ACM/SIGDA Int. Symp. Field Program. Gate Arrays , 133 - 142
    17. 17)
      • 17. ‘Predictive Technology Model (PTM)’. Available at http://ptm.asu.edu/, accessed 19 April 2016.
        .
    18. 18)
      • M. Iida , K. Inoue , M. Amagasaki .
        18. Iida, M., Inoue, K., Amagasaki, M., et al: ‘An easily testable routing architecture of FPGA’. 2011 IEEE/IFIP 19th Int. Conf. on VLSI and System-on-Chip (VLSI-SoC), 3–5 October 2011, pp. 106109.
        . 2011 IEEE/IFIP 19th Int. Conf. on VLSI and System-on-Chip (VLSI-SoC) , 106 - 109
    19. 19)
      • W.C. Elmore .
        19. Elmore, W.C.: ‘The transient analysis of damped linear networks with particular regard to wideband amplifiers’, J. Appl. Phys., 1948, 19, (1), pp. 5563.
        . J. Appl. Phys. , 1 , 55 - 63
    20. 20)
      • Q.J. Zhang .
        20. Zhang, Q.J.: ‘NeuroModeler. Carleton University, Ottawa, ON, Canada’. Available at http://www.doe.carl-eton.ca/~qjz/, accessed 19 April 2016.
        .
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cdt.2016.0053
Loading

Related content

content/journals/10.1049/iet-cdt.2016.0053
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address