Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Brain-inspired computing

The inner workings of the brain as a biological information processing system remain largely a mystery to science. Yet there is a growing interest in applying what is known about the brain to the design of novel computing systems, in part to explore hypotheses of brain function, but also to see if brain-inspired approaches can point to novel computational systems capable of circumventing the limitations of conventional approaches, particularly in the light of the slowing of the historical exponential progress resulting from Moore's Law. Although there are, as yet, few compelling demonstrations of the advantages of such approaches in engineered systems, a number of large-scale platforms have been developed recently that promise to accelerate progress both in understanding the biology and in supporting engineering applications. SpiNNaker (Spiking Neural Network Architecture) is one such large-scale example, and much has been learnt in the design, development and commissioning of this machine that will inform future developments in this area.

References

    1. 1)
      • 8. Bi, G.Q., Poo, M.M.: ‘Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type’, J. Neurosci., 1998, 18, pp. 1046410472.
    2. 2)
      • 20. Brown, A.D., Furber, S., Reeve, J.S., et al: ‘SpiNNaker – programming model’, IEEE Trans. Comput., 2015, 64, (6), pp. 17691782.
    3. 3)
    4. 4)
      • 3. Mahowald, M.: ‘VLSI analogs of neuronal visual processing: a synthesis of form and function’. Ph.D. dissertation, California Inst. Tech., Pasadena, CA, 1992.
    5. 5)
      • 24. Mundy, A., Knight, J., Stewart, T., et al: ‘An efficient SpiNNaker implementation of the neural engineering framework’. Proc. IJCNN 2015, Killarney, Ireland, 2015.
    6. 6)
      • 7. Hebb, D.O.: ‘The organization of behavior: a neuropsychological theory’ (Wiley, New York, NY, 1949).
    7. 7)
      • 12. Ahmad, S., Hawkins, J.: ‘Properties of sparse distributed representations and their application to hierarchical temporal memory’, CoRR, 2015, abs/1503.07469, pp. 118.
    8. 8)
    9. 9)
    10. 10)
      • 1. Kanerva, P.: ‘Sparse distributed memory’ (The MIT Press, 1988).
    11. 11)
      • 9. Tully, P.J., Hennig, M.H., Lansner, A.: ‘Synaptic and nonsynaptic plasticity approximating probabilistic inference’, Front. Synaptic Neurosci., 2014, 6, (8), pp. 116.
    12. 12)
      • 8. Bi, G.Q., Poo, M.M.: ‘Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type’, J. Neurosci., 1998, 18, pp. 1046410472.
    13. 13)
      • 26. Galluppi, F., Lagorce, X., Stromatias, E., et al: ‘A framework for plasticity implementation on the SpiNNaker neural architecture’, Front. Neurosci., 2014, 8, (429), doi: 10.3389/fnins.2014.00429.
    14. 14)
      • 2. Moore, G.E.: ‘Cramming more components onto integrated circuits’, Electronics, 1965, 38, (8), pp. 114117.
    15. 15)
    16. 16)
    17. 17)
      • 16. Fox, P.J., Moore, S.W., Marsh, S.J.T., et al: ‘BluehiveVA field-programmable custom computing machine for extreme-scale real-time neural network simulation’. Proc. IEEE 20th Int. Symp. Field-Programmable Custom Comput.,March 2012, pp. 133140.
    18. 18)
    19. 19)
      • 15. Schemmel, J., Bruderle, D., Grubl, A., et al: ‘A wafer-scale neuromorphic hardware system for large-scale neural modeling’. Proc. Int. Symp. Circuits System, 2010, pp. 19471950.
    20. 20)
    21. 21)
    22. 22)
      • 22. Eliasmith, C., Anderson, C.H.: ‘Neural engineering: computation, representation, and dynamics in neurobiological systems’ (MIT Press, Cambridge, MA, 2003).
    23. 23)
      • 11. Stromatias, E., Neil, D., Pfeiffer, M., et al: ‘Robustness of spiking deep nelief networks to noise and reduced bit precision of neuro-inspired hardware platforms’, Front. Neurosci., 2015, 9, (222), doi: 10.3389/fnins.2015.00222.
    24. 24)
    25. 25)
    26. 26)
    27. 27)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cdt.2015.0171
Loading

Related content

content/journals/10.1049/iet-cdt.2015.0171
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address