Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Very-large-scale integration implementation of a 16-bit clocked adiabatic logic logarithmic signal processor

This study describes a low-power 16-bit logarithmic signal processor built using clocked adiabatic logic. The circuit has been designed and implemented using an Austria Micro Systems 0.35 μm complementary metal–oxide–semiconductor (CMOS) process. A test device has been fabricated and functionally verified. The processor architecture has an active area of 0.57 mm2. Simulation results with this architecture, using clock frequencies up to 100 MHz have confirmed results from other researchers that clocked adiabatic consumes up to ten times less power than conventional CMOS logic.

References

    1. 1)
    2. 2)
    3. 3)
      • 4. Jaeyoon, K., Tiwari, S.: ‘Inexact computing for ultra-low-power nanometer digital circuit design’. IEEE/ACM Int. Symp. on Nanoscale Architectures, San Diego, California, June 2011, pp. 2431.
    4. 4)
      • 21. Weiqiang, Z., Li, S., Xiaoyan, L., et al: ‘Single-phase adiabatic tree multipliers with modified booth algorithm’. WRI World Congress on Computer Science and Information Engineering, Los Angeles, California, 31 March–2 April 2009, pp. 402407.
    5. 5)
    6. 6)
      • 11. Maksimovic, D., , Oklobdzija, V., , Vojin, G.: ‘Clocked CMOS adiabatic logic with single AC power supply’. Solid-State Circuits Conference, Sept. 1995, pp. 370373.
    7. 7)
    8. 8)
      • 12. Koller, J.G., Athas, W.C.: ‘Adiabatic switching, low energy computing, and the physics of storing and erasing information’. Workshop on Physics and Computation, Oct 1992, pp. 267270.
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
      • 13. Younis, S.G., Knight, T.F.: ‘Asymptotically zero energy split-level charge recovery logic’. Int. Workshop on Low Power Design, 1994, pp. 177182.
    15. 15)
      • 18. Changning, L., Jianping, H.: ‘Single-phase adiabatic flip-flops and sequential circuits using improved CAL circuits’. Seventh Int. Conf. on ASIC, October 2007, pp. 126129.
    16. 16)
      • 3. Jafari, M., Imani, M., Ansari, M., et al: ‘Design of an ultra-low power 32-bit adder operating at subthreshold voltages in 45-nm FinFET’. Eighth Int. Conf. on Design & Technology of Integrated Systems in Nanoscale Era (DTIS), Abu Dhabi, March 2013, pp. 167168.
    17. 17)
    18. 18)
      • 1. Markovic, D., Wang, C.C., Alarcon, L.P., et al: ‘Ultralow-power design in near-threshold region’. Proc. of the IEEE, Feb 2010, pp. 237252.
    19. 19)
      • 26. Yemiscioglu, G., Lee, P.: ‘16-bit clocked adiabatic logic (CAL) logarithmic signal processor’. IEEE 55th Int. Midwest Symp. on Circuits and Systems, Boise, Idaho, August 2012, pp. 113116.
    20. 20)
      • 9. Jianping, H., Lizhang, C., Xiao, L.: ‘A new type of low-power adiabatic circuit with complementary pass-transistor logic’. Proc. Fifth Int. Conf. on ASIC, Oct. 2003, pp. 12351238.
    21. 21)
      • 19. Heller, L., Griffin, W., Davis, J., et al: ‘Cascode voltage switch logic: a differential CMOS logic family’. IEEE Int. Solid-State Circuits Conf.San Francisco, California, February 1984, pp. 1617.
    22. 22)
      • 15. Junyoung, P., Sung-Je, H., Jong, K.: ‘Energy-saving design technique achieved by latched pass-transistor adiabatic logic’. IEEE Int. Symp. on Circuits and Systems, May 2005, pp. 46934696.
    23. 23)
    24. 24)
      • 29. Weiqiang, Z., Li, S., Jinghong, F., et al: ‘A power-gating scheme for CAL circuits using single-phase power-clock’. IEEE Asia Pacific Conf. on Circuits and Systems, 30 November–3 December 2008, pp. 846849.
    25. 25)
    26. 26)
      • 17. Denker, J.S.: ‘A review of adiabatic computing’. IEEE Symp. Low Power Electronics, San Diego, California, October 1994, pp. 9497.
    27. 27)
    28. 28)
      • 23. SanGregory, S.L., Brothers, C., Gallagher, D., et al: ‘A fast, low-power logarithm approximation with CMOS VLSI implementation’. IEEE 42nd Midwest Symp. on Circuits and Systems, Las Cruces, New Mexico, August 1999, pp. 388391.
    29. 29)
    30. 30)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cdt.2014.0102
Loading

Related content

content/journals/10.1049/iet-cdt.2014.0102
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address