access icon free Energy estimation models for video decoders: reconfigurable video coding-CAL case-study

In this study, a platform-independent energy estimation methodology is proposed to estimate the energy consumption of reconfigurable video coding (RVC)-CAL video codec specifications. This methodology is based on the performance monitoring counters (PMCs) of embedded platforms and demonstrates its portability, simplicity and accuracy for on-line estimation. It has two off-line procedure stages: the former, which automatically identifies the most appropriate PMCs with no specific detailed knowledge of the employed platform, and the latter, which trains the model using either a linear regression or a multivariable adaptive regression splines (MARS) method. Experimenting on an RVC-CAL decoder, the proposed PMC-driven model can achieve an average estimation error <10%. In addition, the maximal model computation overhead is 4.04%. The results show that the training video sequence has significant influence on the model accuracy. An experimental metric is introduced to achieve more stable accurate models based on a combination of training sequences. Furthermore, a comparison demonstrates better predictive ability of MARS techniques in scenarios with multi-core platforms. Finally, the experimental results show a good potential of energy efficiency improvement when the estimation model is combined into the RVC framework. In two different scenarios, the battery lifetime is increased 5.16% and 20.9%, respectively.

Inspec keywords: video codecs; image sequences; regression analysis; decoding; splines (mathematics); video coding

Other keywords: MARS method; performance monitoring counters; multivariable adaptive regression splines method; multicore platforms; energy efficiency improvement; training video sequence; PMC-driven model; RVC-CAL video codec specifications; offline procedure stages; video decoders; accuracy model; predictive ability; linear regression method; energy consumption; piecewise modelling techniques; platform-independent energy estimation methodology; online estimation; reconfigurable video coding

Subjects: Other topics in statistics; Codecs, coders and decoders; Computer vision and image processing techniques; Other topics in statistics; Interpolation and function approximation (numerical analysis); Video signal processing; Interpolation and function approximation (numerical analysis); Image and video coding

References

    1. 1)
      • 41. Chen, P.H., King, C.T., Chang, Y.Y., Tseng, S.Y.: ‘Multiprocessor system-on-chip profiling architecture: design and implementation’. 15th Int. Conf. on Parallel and Distributed Systems, 2009, pp. 519526.
    2. 2)
      • 39. Shannon, L., Chow, P.: ‘Maximizing system performance using reconfigurability to monitor system communications’. Int. Conf. on Field-Programmable technology (FPT), Australia, December 2004, pp. 231238.
    3. 3)
      • 3. Mattavelli, M., Amer, I., Raulet, M.: ‘The reconfigurable video coding standard [Standards in a Nutshell]’. Signal Processing Magazine, 2010.
    4. 4)
    5. 5)
      • 24. Kutner, M.H., Nachtsheim, C.J., Neter, J.: ‘Applied linear regression models’ (McGraw-Hill Europe, 2004, 4th edn.).
    6. 6)
      • 35. Beagle Board System Reference Manual Rev C4’, December 2009.
    7. 7)
      • 40. Tong, J.G., Khalid, M.A.S.: ‘Profiling tools for FPGA-based embedded systems: survey and quantitative comparision’, J. Comput. Math, 2008, 3, (6), pp. 114.
    8. 8)
      • 20. Isci, C., Contreras, G., Martonosi, M.: ‘Live, runtime phase monitoring and prediction on real systems with application to dynamic power management’. Proc. 39th Annual IEEE/ACM Int. Symp. on Microarchitecture, December 2006, pp. 359370.
    9. 9)
      • 11. Lively, C., Wu, X.F., Taylor, V., et al: ‘Power-aware predictive models of hybird (MPI/Open MP) scientific applications on multicore systems’. Int. Conf. on Energy-Aware High Performance Computing, 7–9 September, 2011.
    10. 10)
      • 14. Yoon, C., Kim, D., Jung, W., Kang, C., Cha, H.: ‘App Scope: Application Energy Metering Framework for Android Smartphones using Kernel Activity Monitoring’, USENIX ATC, 2012, pp. 387–400.
    11. 11)
    12. 12)
      • 19. Friedman, J.H.: ‘Multivariate Adaptive Regression Splines’, 1991, 19, (1).
    13. 13)
    14. 14)
      • 2. Jang, E.S., Ohm, J., Mattavelli, M.: ‘Whitepaper on reconfigurable video coding (RVC)’. ISO/IEC JTC1/SC29/WG11, MPEG2008/N9586, Antalya, Turkey, January 2008. Available: http://mpeg.chiariglione.org/technologies/mpeg-b/mpb-rvc/index.htm.
    15. 15)
    16. 16)
      • 15. Lu, X., Fernaine, T., Wang, Y.: ‘Modelling power consumption of a H.263 video encoder’. Proc. Int. Symp. on Circuits and Systems, 2004.
    17. 17)
      • 7. ORCC project. http://orcc.sourceforge.net/.
    18. 18)
      • 26. Linux kernel sources. 3.0.8 based specifically-modified version to suit for the performance monitoring counters enable on OMAP4460git://git.kernel.org/pub/scm/linux/kernel/git/will/linux.git.
    19. 19)
      • 34. Bedeian, A.G., Mossholder, K.W.: ‘On the use of the coefficient of variation as a Measure of Diversity’. Organizational Research Methods, 2000.
    20. 20)
      • 33. A New View of Statistics, Hopkins, Will G., electronic edition http://www.sportsci.org/resource/stats/index.html.
    21. 21)
      • 22. Davis, J.D., Rivore, S., Goldszmidt, M., Ardestani, E.K.: ‘No Hardware Required: Building and Validating Composable Highly Accurate OS-based Power Models’, Microsoft Technical Report, 2011.
    22. 22)
      • 9. Xiao, Y., Bhaumik, R., Yang, Z., Siekkinen, M., Savolainenand, P., Ylä-Jääski, A.: ‘A system-level model for runtime power estimation on mobile devices’. IEEE/ACM Int. Conf. on Green Computing and Communications, 2010.
    23. 23)
    24. 24)
      • 27. ITU-T, Recommendation T-REC, January 2012, H.264.1: Conformance specification for ITU-T H.264 Advanced Video Coding.
    25. 25)
      • 36. Pescador, F., Chavarrias, M., Garrido, M.J., Jurarez, E., Sanz, C.: ‘Complexity Analysis on an HECE Decoder based on a Digital Signal Processor’.
    26. 26)
      • 8. Goel, B., McKee, S., Gioiosa, R., Singh, K., Bhadauria, M., Cesati, M.: ‘Portable, scalable, per-core power estimation for intelligent resource management’. IGCC'10: Proc. 2010 Int. Conf. on Green Computing, IEEE Press, August 2010, pp. 135146.
    27. 27)
      • 13. Zhang, L., Tiwana, B., Qian, Z., et al: ‘Accurate online power estimation and automatic battery behavior based power model generation for smartphones’. In CODES+ISSS, 2010.
    28. 28)
      • 30. Herrera, J.: ‘Desarrollo de un Emulador de Baterías para el Estudio del Consumo de la Tarjeta BeagleBoard’, PFC EUITT-UPM, July 2011.
    29. 29)
      • 37. ISO/IEC International standard 14496–4:2004 video Information technology – Coding of audio-visual objects – Part 4: Conformance testing.
    30. 30)
      • 21. PandaBoard. http://pandaboard.org/content/resources/references.
    31. 31)
      • 4. Ma, Z., Segall, A.: ‘Low resolution decoding for high efficiency video coding’. Proc. IASTED Signal and Image Processing Conf., Dallas, December 2011.
    32. 32)
      • 29. Bossen, F.: ‘Common Test Conditions and Software Reference Configurations’. document JCTVC-L1100, JCT-VC, January 2013.
    33. 33)
      • 31. Castro, J.J., Contreras, E., Juárez, E., Herrera, J., Pescadorand, F., Sanz, C.: ‘Power-state control methods for a battery state-of-charge dependent graceful degradation in an arm-based embedded system’. 27th Conf. on Design of Circuits and Integrated Systems, November, 2012.
    34. 34)
      • 23. Skiena, S.S.: ‘Calculated bets: computers, gambling, and mathematical modeling to win’ (Cambridge University Press, 2001), vol. 8.
    35. 35)
      • 17. Li, X., Ma, Z., Fernandes, F.C.A.: ‘Modelling power consumption for video decoding on mobile platform and its application to power-rate constrained streaming’. Visual Communications and Image Processing (VCIP), 2012.
    36. 36)
      • 12. Performance Application Programming Interface, http://icl.cs.utk.edu/projects/papi/wiki/PAPIC:PAPI.3.
    37. 37)
      • 6. Liu, T.-M., Lin, T-A., Wang, S-Z., et al: ‘An 865-μW H.264/AVC video decoder for mobile applications’. IEEE Asian Solid-State Circuits Conf., 2005, pp. 301304.
    38. 38)
    39. 39)
      • 16. Gan, T., Denolf, K., Lafruit, G., Moccagtta, I., Dejonghe, A., Lenoir, G.: ‘Modelling energy consumption of an ASIC MPEG-4 simple profile encoder’. Int. Conf. on Multimedia and Expo, 2007.
    40. 40)
      • 32. Agilent 66321D Mobile Communications DC Source product page. http://bit.ly/JE0cNJ.
    41. 41)
      • 18. Rong, R., Juarez, E., Pescador, F., Sanz, C.: ‘A stable high-level energy estimation methodology for battery-powered embedded systems’. ISCE 2012, Harrisburg, June 2012.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cdt.2014.0087
Loading

Related content

content/journals/10.1049/iet-cdt.2014.0087
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading