Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Approach to design a compact reversible low power binary comparator

Reversible logic has captured significant attention in recent time as reducing power consumption is the main concern of digital logic design. It consumes less power by recovering bit loss from its unique input–output mapping. In this study, the authors propose a reversible low power n-bit binary comparator. An algorithm is presented for constructing a compact reversible n-bit binary comparator circuit. The authors also propose two new reversible gates, namely, Babu-Jamal-Saleheen (BJS) and Hasan-Lafifa-Nazir (HLN) gates, to optimise the comparator. In addition, several theorems on the numbers of gates, garbage outputs, quantum cost, ancilla input, power, delay and area of the reversible n-bit comparator have been presented. The simulation results of the proposed comparator show that the circuit works correctly and gives significantly better performance than the existing ones. The comparative study shows that, as an example, for a 64-bit comparator, the proposed design achieves the improvement of 24.4% in terms of number of gates, 19.9% in terms of garbage outputs, 7.7% in terms of quantum cost, 25.77% in terms of area and 3.43% in terms of power over the existing best one. Area and power analysis also show that the proposed design is the most compact as well as a low power circuit.

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
      • 15. Saraswat, K.Prof.: ‘Interconnect Scaling, Stanford University Lecture Slide, URL’: http://www.stanford.edu/class/ee311/NOTES/InterconnectScalingSlides.pdf.
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
      • 9. Nielsen, M., Chuang, I.: ‘Quantum computation and quantum information’ (Cambridge Univ. Press, 2000).
    11. 11)
      • 13. Microwind DSCH – Schematic Editor and Digital Simulator, http://www.microwind.net/dsch.ph.
    12. 12)
      • 2. Perkowski, M., Al-Rabadi, A.N., Kerntopf, P., et alA general decomposition for reversible logic’. Proc. RM'2001, Starkville, 2001, pp. 119138.
    13. 13)
      • 12. CMOS 45 nm Open Cell Library: URL http://www.si2.org/openeda.si2.org/projects/nangatelib.
    14. 14)
      • 20. Thapliyal, H., Ranganathan, N., Ferreira, R.: ‘Design of a comparator tree based on reversible logic’. Proc. Tenth IEEE Int. Conf. on Nanotechnology Joint Symp. with Nano, August 2010, pp. 11131116.
    15. 15)
      • 8. Biswas, A.K., Hasan, M.M., Chowdhury, A.R., Babu, H.M.H.: ‘Efficient approaches for designing reversible binary coded decimal adders’, Microelectron. J., 2008, 39, (12), pp. 16931703 (doi: 10.1016/j.mejo.2008.04.003).
    16. 16)
      • 19. Rangaraju, H.G., Hegde, V., Raja, K.B., Muralidhara, K.N.: ‘Design of low power reversible binary comparator’. Proc. Engineering (ScienceDirect), 2011.
    17. 17)
      • 1. Landauer, R.: ‘Irreversibility and heat generation in the computational process’, IBM J. Res. Dev., 1961, 5, pp. 183191 (doi: 10.1147/rd.53.0183).
    18. 18)
      • 5. Bennet, C.H.: ‘Logical reversibility of computation’, IBM J. Res. Dev., 1973, 17, pp. 525532 (doi: 10.1147/rd.176.0525).
    19. 19)
      • 10. Feynman, R.P.: ‘Quantum mechanical computers’, Opt. News, 1985, 11, (2), pp. 1120 (doi: 10.1364/ON.11.2.000011).
    20. 20)
      • 14. Mui, M.L., Banerjee, K., Mehrotra, A.: ‘A global interconnect optimization scheme for nanometer scale VLSI with implications for latency, bandwidth, and power dissipation’, IEEE Trans. Electron Devices, 2004, 51, (2), pp. 195203 (doi: 10.1109/TED.2003.820651).
    21. 21)
      • 6. Kerntopf, P., Perkowski, M., Khan, M.H.A.: ‘On universality of general reversible multiple valued logic gates’. IEEE Proc. of the 34th Int. Symp. on Multiple Valued Logic (ISMVL04), 2004, pp. 6873.
    22. 22)
      • 17. Al-Rabadi, A.N.: ‘Closed – system quantum logic network implementation of the viterbi algorithm’, Facta Universitatis – Elec. Energ., 2009, 22, (1), pp. 133 (doi: 10.2298/FUEE0901001A).
    23. 23)
      • 16. Dadda, L.: ‘Multioperand parallel decimal adder: a mixed binary and BCD approach’, IEEE Trans. Comput., 2007, 56, (10), pp. 13201328 (doi: 10.1109/TC.2007.1067).
    24. 24)
      • 26. Samanta, J., De, B.P., Bag, B., Maity, R.K.: ‘Comparative study for delay & power dissipation of CMOS Inverter in UDSM range’, Int. J. Soft Comput. Eng., ISSN: 2231–2307, 2012, 1, (6).
    25. 25)
      • 18. Rangaraju, H.G., Hegde, V., Raja, K.B., Muralidhara, K.N.: ‘Design of efficient reversible binary comparator’. Int. Conf. on Communication Technology and System Design, 2012, vol. 30, pp. 897904.
    26. 26)
      • 4. Thapliyal, H., Srinivas, M.B.: ‘Novel reversible TSG gate and its application for designing reversible carry look ahead adder and other adder architectures’. Proc. of the 10th Asia-Pacific Computer Systems Architecture Conf. (ACSAC 05), (LNCS, 3740), 2005, pp. 775786.
    27. 27)
      • 15. Saraswat, K.Prof.: ‘Interconnect Scaling, Stanford University Lecture Slide, URL’: http://www.stanford.edu/class/ee311/NOTES/InterconnectScalingSlides.pdf.
    28. 28)
      • 22. Nagamani, A.N., Jayashree, H.V., Bhagyalakshmi, H.R.: ‘Novel low power comparator design using reversible logic gates’, Indian J. Comput. Sci. Eng., 2011, 2, (4), pp. 566574.
    29. 29)
      • 25. Mehta, D.N., Sanghavi, P.N.: ‘Intel's 45 nm CMOS technology performance parameters in VLSI Design’, Int. J. Electron. Commun. Comput. Eng., REACT-2013, 4, (2), ISSN 2249–071X.
    30. 30)
      • 7. Babu, H.M.H., Islam, M.R., Chowdhury, A.R., Chowdhury, S.M.A.: ‘Synthesis of full-adder circuit using reversible logic’. 17th Int. Conf. on VLSI Design, 2004, pp. 757760.
    31. 31)
      • 11. Peres, A.: ‘Reversible logic and quantum computers’, Phys. Rev., 1985, 32, (6), pp. 32663276 (doi: 10.1103/PhysRevA.32.3266).
    32. 32)
      • 24. Shamsujjoha, M., Babu, H.M.H.: ‘A low power fault tolerant reversible decoder using MOS transistor’. Proc. 26th Int. Conf. on VLSI Design and the 12th Int. Conf. on Embedded Systems, Pune, India, 2013, pp. 368373.
    33. 33)
      • 23. Morrison, M., Lewandowski, M., Ranganathan, N.: ‘Design of a tree-based comparator and memory unit based on a novel reversible logic structure’. IEEE Computer Society Annual Symp. on VLSI, 2012, pp. 331336.
    34. 34)
      • 3. Perkowski, M., Kerntopf, P.: ‘Reversible logic’. Invited tutorial, Proc. EURO-MICRO, Warsaw, Poland, September 2001.
    35. 35)
      • 21. Vudadha, C., Phaneendra, P.S., Sreehari, V., Ahmed, S.E., Muthukrishnan, N.M., Srinivas, M.B.: ‘Design of prefix-based optimal reversible comparator’. IEEE Computer Society Annual Symp. on VLSI, 2012, pp. 201206.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cdt.2013.0066
Loading

Related content

content/journals/10.1049/iet-cdt.2013.0066
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address