Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free All-digital delay line-based time difference amplifier in 65 nm CMOS technology

Time-to-digital converter (TDC) is one of the important blocks in most of the digital systems that need to have high resolution. Time difference amplifier (TDA) is used in TDC for increasing the resolution. In this study, an all-digital TDA is proposed. The proposed TDA uses the delay lines with difference delay for amplifying. The proposed circuit is designed and simulated in 65 nm CMOS technology and has a gain of ten and a chip area of about 0.003 mm2. The calculated maximum gain error is 5%. The proposed TDA consumes 0.94 mW power under 1.1 V supply voltage.

References

    1. 1)
      • 4. Vercesi, L., Liscidini, A., Castello, R.: ‘Two-dimensions Vernier time-to-digital converter’, IEEE J. Solid-State Circuits, 2010, 45, (8), pp. 15041512.
    2. 2)
      • 12. Tamborini, D., Markovic, B., Villa, F., et al: ‘16-channel module based on a monolithic array of single-photon detectors and 10-ps time-to-digital converters’, IEEE J. Sel. Top. Quantum Electron., 2014, 20, (6), pp. 13941407.
    3. 3)
      • 7. Cheng, Z., Jamal Deen, M., Peng, H.: ‘A low-power gateable Vernier ring oscillator time-to-digital converter for biomedical imaging applications’, IEEE Trans. Biomed. Circuits Syst., 2016, 10, (2), pp. 445454.
    4. 4)
      • 22. Kwon, H.-J., Lee, J.-S., Kim, B., et al: ‘Analysis of an open-loop time amplifier with a time gain determined by the ratio of bias current’, IEEE Trans. Circuits Syst., 2014, 61, (7), pp. 481485.
    5. 5)
      • 21. Dehlaghi, B., Magierowski, S., Belostotski, L.: ‘Highly-linear time-difference amplifier with low sensitivity to process variations’, Electron. Lett., 2011, 47, (13), pp. 743745.
    6. 6)
      • 17. Dudek, P., Szczepanski, S., Hatfield, J.V.: ‘A high-resolution CMOS time-to-digital converter utilizing a Vernier delay line’, IEEE J. Solid-State Circuits, 2008, 35, (2), pp. 240247.
    7. 7)
      • 14. Liu, Y., Vollenbruch, U., Chen, Y., et al: ‘A 1 GHz ADPLLWith a 1.25 ps minimum-resolution sub-exponent TDC in 0.18 µm CMOS’. IEEE Radio and Wireless Symp., Orlando Florida, USA, 2008.
    8. 8)
      • 5. Elshazly, A., Rao, S., Young, B., et al: ‘A noise-shaping time-to-digital converter using switched-ring oscillators – analysis, design, and measurement techniques’, IEEE J. Solid-State Circuits, 2014, 49, (5), pp. 11841197.
    9. 9)
      • 8. Perenzoni, M., Gasparini, L., Stoppa, D.: ‘Design and characterization of a 43.2-ps and PVT-resilient TDC for single-photon imaging arrays’, IEEE Trans. Circuits Syst. II, Express Briefs, 2018, PP, (99), pp. 411415.
    10. 10)
      • 16. Staszewski, R.B., Vemulapalli, S., Vallur, P., et al: ‘1.3 V 20 ps time-to-digital converter for frequency synthesis in 90-nm CMOS’, IEEE Trans. Circuits Syst. II, 2006, 53, (3), pp. 220224.
    11. 11)
      • 11. Jansson, J.-P, Koskinen, V, Mäntyniemi, A, et al: ‘A multichannel high-precision CMOS time-to-digital converter for laser-scanner-based perception systems’, IEEE Trans. Instrument. Meas., 2012, 61, (9), pp. 25812590.
    12. 12)
      • 9. Kim, Y., Kim, T.W.: ‘An 11 b 7 ps resolution two-step time-to-digital converter with 3-D Vernier space’, IEEE Trans. Circuits Syst., 2014, 61, (8), pp. 23262336.
    13. 13)
      • 25. Wua, J., Zhanga, W., Yua, X., et al: ‘A hybrid time-to-digital converter based on residual time extraction and amplification’, Microelectron. J., 2017, 63, (12), pp. 148154.
    14. 14)
      • 23. Lee, M., Abidi, A.A.: ‘A 9b, 1.25 ps resolution coarse-fine time-to-digital converter in 90 nm CMOS that amplifies a time residue’. IEEE Int. Symp. VLSI Circuits Digest, Kyoto, Japan, 2007, pp. 168169.
    15. 15)
      • 19. Kim, K.S., Kim, Y.H., Yu, W., et al: ‘A 7 bit, 3.75 ps resolution two-step time-to-digital converter in 65 nm CMOS using pulse-train time amplifier’, IEEE J. Solid-State Circuits, 2013, 48, (4), pp. 10091017.
    16. 16)
      • 26. Kamakshi, D.A., Fojtik, M., Khailany, B., et al: ‘Modeling and analysis of power supply noise tolerance with fine-grained GALS adaptive clocks’. IEEE Int. Symp. on Asynchronous Circuits and Systems., Porto Alegre, Brazil, 2016, pp. 75–82.
    17. 17)
      • 2. Hussein, A.I., Vasadi, S, Paramesh, J.: ‘A 450 fs 65-nm CMOS millimeter-wavetime-to-digital converter using statistical element selection for all-digital PLLs’, IEEE J. Solid-State Circuits, 2017, l, (99), pp. 118.
    18. 18)
      • 13. Roy, N., Nolet, F., Dubois, F., et al: ‘Low power and small area, 6.9 ps RMSTime-to-digital converter for3-D digital SiPM’, IEEE Trans. Radiat. Plasma Med. Sci., 2017, 1, (6), pp. 486494.
    19. 19)
      • 18. Chmielewski, K.: ‘Multi-Vernier time-to-digital converter implemented in a field-programmable gate array’, Meas. Sci. Technol., 2011, 22, pp. 14.
    20. 20)
      • 6. Hassan, A.H., Ali, A., Ismail, M.W., et al: ‘A 1 GS/s 6-bit time-based analog-to-digital converter (T-ADC) for front-end receivers’. 60th Int. Midwest Symp. Circuits and Systems (MWSCAS), Boston, MA, USA, 2017, pp. 16051608.
    21. 21)
      • 24. Lee, S.-K., Seo, Y.-H., Park, H.-J., et al: ‘A 1 GHz ADPLL with a 1.25 ps minimum-resolution sub-exponent TDC in 0.18 µm CMOS’, IEEE J. Solid-State Circuits., 2010, 45, (12), pp. 28742881.
    22. 22)
      • 1. Kim, S., Hong, S., Chang, K., et al: ‘A 2 GHz synthesized fractional-N ADPLL with dual-referenced interpolating TDC’, IEEE J. Solid-State Circuits, 2016, 51, (2), pp. 391400.
    23. 23)
      • 3. Yu, J., Dai, F.F., Jaeger, R.C.: ‘A 12-bit Vernier ring time-to-digital converter in 0.13 µm CMOS technology’, IEEE J. Solid-State Circuits, 2010, 45, (4), pp. 830842.
    24. 24)
      • 10. Marino, N., Baronti, F., Fanucci, L., et al: ‘A novel time to digital converter architecture for time of flight positron emission tomography’. Workshop on Nordic-Mediterranean Time-to-Digital Converters (NoMe TDC), Perugia, Italy, 2013.
    25. 25)
      • 15. Chen, C.-C., Lin, S.-H., Hwang, C.-S.: ‘An area-efficient CMOS time-to-digital converter based on a pulse-shrinking scheme’, IEEE Trans. Circuits Syst., 2014, 61, (3), pp. 163167.
    26. 26)
      • 20. Shih, H.Y, Lin, S.K, Liao, P.S.: ‘An 80 × analog implemented time-difference amplifier for delay-line-based coarse-fine time-to-digital converters in 0.18-μm CMOS’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2015, 23, (8), pp. 15281533.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2018.5304
Loading

Related content

content/journals/10.1049/iet-cds.2018.5304
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address