Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Canonical transfer function of band-pass NGD circuit

This study introduces the generalised canonical transfer function (TF) of the band-pass negative group delay (NGD) circuit. The principle to identify the unfamiliar band-pass NGD circuits is suggested. Similar to the filter theory, the band-pass NGD TF can be established from low-pass to band-pass frequency transform. The fundamental characteristics of the NGD topology are described. The canonical TF feasibility is concretised with the second-order equivalent impedance constituted by passive elements. The synthesis formulas in function of the desired NGD level and bandwidth are analytically established. Application examples of band-pass NGD impedance synthesis, designed and fabricated are proposed as a proof of concept. Prototypes of band-pass NGD circuits with centre frequencies 1 and 1.5 MHz for the targeted group delay optimal values, respectively, −1 and −1.5 µs are designed and fabricated. As expected, band-pass NGD results in good agreement with the theoretical prediction were obtained with simple lumped circuits. In the future, thanks to theory simplicity, the NGD band-pass cell can be potentially useful for the signal delay correction.

References

    1. 1)
      • 11. Noto, H., Yamauchi, K., Nakayama, M., et al: ‘Negative group delay circuit for feed-forward amplifier’. IEEE Int. Microw. Symp. Digest, Honolulu, Hawaii, June 2007, pp. 11031106.
    2. 2)
      • 4. Eleftheriades, G.V., Siddiqui, O., Iyer, A.K.: ‘Transmission line models for negative refractive index media and associated implementations without excess resonators’, IEEE Microw. Wirel. Compon. Lett., 2003, 13, (2), pp. 5153.
    3. 3)
      • 26. Bao, M., Su, Y.: ‘Device for negative group delay’. United State Patent US9419586B2/WO 2014029412 A1, February 2014.
    4. 4)
      • 13. Choi, H., Jeong, Y., Kim, C.D., et al: ‘Bandwidth enhancement of an analog feedback amplifier by employing a negative group delay circuit’, Prog. Electromagn. Res., 2010, 105, pp. 253272.
    5. 5)
      • 24. Ravelo, B.: ‘Distributed NGD active circuit for RF-microwave communication’, AEU-Int. J. Electron. Commun., 2014, 68, (4), pp. 282290.
    6. 6)
      • 7. Bukhman, N.S., Bukhman, S.V.: ‘On the negative delay time of a narrow-band signal as it passes through the resonant filter of absorption’, Radiophys. Quantum Electron., 2004, 47, (1), pp. 6676.
    7. 7)
      • 31. Ahn, K.-P., Ishikawa, R., Saitou, A., et al: ‘Synthesis for negative group delay circuits using distributed and second-order RC circuit configurations’, IEICE Trans. Electron., 2009, E92–C, (9), pp. 11761181.
    8. 8)
      • 17. Alomar, W., Mortazawi, A.: ‘Method of generating negative group delay in phase arrays without using lossy circuits’. Proc. IEEE Int. Wireless Symp. (IWS) 2013, Beijing, China, 14–18 April 2013, pp. 14.
    9. 9)
      • 15. Oh, S.S., Shafai, L.: ‘Compensated circuit with characteristics of lossless double negative materials and its application to array antennas’, IET Microw. Antennas Propag., 2007, 1, (1), pp. 2938.
    10. 10)
      • 14. Ahn, K.-P., Ishikawa, R., Honjo, K.: ‘Group delay equalized UWB InGaP/GaAs HBT MMIC amplifier using negative group delay circuits’, IEEE Trans. Microw. Theory Tech., 2009, 57, (9), pp. 21392147.
    11. 11)
      • 12. Choi, H., Jeong, Y., Kim, D.C., et al: ‘Efficiency enhancement of feedforward amplifiers by employing a negative group delay circuit’, IEEE Trans. Microw. Theory Tech., 2010, 58, (5), pp. 11161125.
    12. 12)
      • 16. Mortazawi, A., Alomar, W.: ‘Negative group delay circuit’. United States Patent Application US20160093958, March 2016.
    13. 13)
      • 21. Ravelo, B.: ‘Theory and design of analogue and numerical elementary NGD circuits: theoretical characterization of analogue and numerical NGD circuits’ (LAP Lambert Academic Publishing, Germany, 2012), 352 pages.
    14. 14)
      • 8. Choi, H., Jeong, Y., Lim, J., et al: ‘A novel design for a dual-band negative group delay circuit’, IEEE Microw. Wirel. Compon. Lett., 2011, 21, (1), pp. 1921.
    15. 15)
      • 1. Lucyszyn, S., Robertson, I.D.: ‘Analog reflection topology building blocks for adaptive microwave signal processing applications’, IEEE Trans. Microw. Theory Tech., 1995, 43, (3), pp. 601611.
    16. 16)
      • 25. Zhan, L., Zhang, L., Liu, J., et al: ‘Negative group velocity superluminal propagation in optical fibers using stimulated Brillouin scattering’. Proc. Ninth Int. Conf. Optical Communications and Networks (ICOCN 2010), Nanjing, China, 24–27 October 2010, pp. 245248.
    17. 17)
      • 2. Lucyszyn, S., Robertson, I.D., Aghvami, A.H.: ‘Negative group delay synthesizer’, Electron. Lett., 1993, 29, (9), pp. 798800.
    18. 18)
      • 30. Ravelo, B.: ‘High-pass negative group delay RC-network impedance’, Trans. Circuits Syst. II, Express Briefs, 2017, 64, (9), pp. 10521056.
    19. 19)
      • 22. Keser, S., Mojahedi, M.: ‘Broadband negative group delay microstrip phase shifter design’. Proc. IEEE Antennas Propagation Society Int. Symp. (APSURSI), Charleston, SC, USA, June 2009, pp. 14.
    20. 20)
      • 32. Park, J., Chaudhary, G., Jeong, J., et al: ‘Microwave negative group delay circuit: filter synthesis approach’, J. Electromagn. Eng. Sci., 2016, 16, (1), pp. 712.
    21. 21)
      • 18. Solli, D., Chiao, R.Y., Hickmann, J.M.: ‘Superluminal effects and negative delays in electronics, and their applications’, Phys. Rev. E, 2002, 66, (5), pp. 056601.1056601.4.
    22. 22)
      • 20. Eudes, T., Ravelo, B.: ‘Cancellation of delays in the high-rate interconnects with UWB NGD active cells’, Appl. Phys. Res., 2011, 3, (2), pp. 8188.
    23. 23)
      • 28. Ravelo, B.: ‘Similitude between the NGD function and filter gain behaviours’, Int. J. Circuit Theory Appl., 2014, 42, (10), pp. 10161032.
    24. 24)
      • 19. Podilchak, S.K., Frank, B.M., Freundorfer, A.P., et al: ‘High speed metamaterial-inspired negative group delay circuits in CMOS for delay equalization’. Proc. Second Microsystems Nanoelectronics Research Conf. (MNRC), Ottawa, ON, Canada, October 2009, pp. 912.
    25. 25)
      • 10. Liu, G., Xu, J.: ‘Compact transmission-type negative group delay circuit with low attenuation’, Electron. Lett., 2017, 53, (7), pp. 476478.
    26. 26)
      • 27. Chaudhary, G., Jeong, Y.: ‘A design of power divider with negative group delay characteristics’, IEEE Microw. Wirel. Compon. Lett., 2015, 25, (6), pp. 394396.
    27. 27)
      • 29. Ravelo, B.: ‘First-order low-pass negative group delay passive topology’, Electron. Lett., 2016, 52, (2), pp. 124126.
    28. 28)
      • 23. Takeda, S., Anada, T.: ‘Phase equalizer making use of negative group delay times by reflection coefficients’. Proc. 41st European Microwave Conf. (EuMC 2011), Manchester, UK, 9–14 October 2011, pp. 628630.
    29. 29)
      • 5. Siddiqui, O.F., Mojahedi, M., Eleftheriades, G.V.: ‘Periodically loaded transmission line with effective negative refractive index and negative group velocity’, IEEE Trans. Antennas Propag., 2003, 51, (10), pp. 26192625.
    30. 30)
      • 6. Siddiqui, O.F., Erickson, S.J., Eleftheriades, G.V., et al: ‘Time-domain measurement of negative group delay in negative-refractive-index transmission-line metamaterials’, IEEE Trans. Microwave Theory Tech., 2004, 52, (5), pp. 14491454.
    31. 31)
      • 9. Chaudhary, G., Jeong, Y.: ‘Tunable center frequency negative group delay filter using coupling matrix approach’, IEEE Microw. Wirel. Compon. Lett., 2017, 27, (1), pp. 3739.
    32. 32)
      • 3. Broomfield, C.D., Everard, J.K.A.: ‘Broadband negative group delay networks for compensation of oscillators using feed forward amplifiers’, Electron. Lett., 2000, 36, (23), pp. 17101711.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2018.5214
Loading

Related content

content/journals/10.1049/iet-cds.2018.5214
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address