http://iet.metastore.ingenta.com
1887

Si3N4:HfO2 dual-k spacer bulk planar junctionless transistor for mixed signal integrated circuits

Si3N4:HfO2 dual-k spacer bulk planar junctionless transistor for mixed signal integrated circuits

For access to this article, please select a purchase option:

Buy eFirst article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

For the first time halfnium oxide (HfO2) is being incorporated in the dual-k spacers and has been used in bulk planar junctionless transistor (BPJLT). It has been found that incorporating HfO2 in spacers not only improves the electrostatic integrity but also improves digital/analogue circuit performance of the BPJLT. Further, the increased effective gate length due to fringing electric field through HfO2 to thin body reduces OFF-state leakage, subthreshold swing and drain-induced barrier lowering by ∼60, ∼15 and ∼30%, respectively. Although the presence of HfO2 inner spacer layer at source/drain increases the parasitic capacitances, the significant improvement in ON-state drive current reduces the intrinsic gate delay of the device. Further, the analogue circuit figures of merit such as transconductance, transconductance generation factor and the intrinsic gain of the proposed device are found to be significantly improved over the conventional BPJLT device. The mixed mode device/circuit simulation results of an inverter and the common source amplifier show that leakage power dissipation, propagation delay and the open-circuit voltage gain of the proposed device are improved significantly over the conventional BPJLT device. The fabrication process flow of this novel device has also been proposed.

References

    1. 1)
      • 1. Choi, S.J., Moon, D.I., Kim, S., et al: ‘Sensitivity of threshold voltage to nanowire width variation in junctionless transistor’, IEEE Electron Dev. Lett., 2011, 32, (2), pp. 125127.
    2. 2)
      • 2. Li, C., Zhuang, Y., Di, S., et al: ‘Subthreshold behavior model for nanoscale short-channel junctionless cylindrical surrounding-gate MOSFETs’, IEEE Trans. Electron Devices, 2013, 60, (11), pp. 36553661.
    3. 3)
      • 3. Chen, H.-B., Chang, C.-Y., Lu, N.-H., et al: ‘Characteristics of gate-all-around junctionless poly-Si TFTs with an ultrathin channel’, IEEE Electron Device Lett., 2013, 34, (07), pp. 897899.
    4. 4)
      • 4. Gundapaneni, S., Ganguly, S., Kottantharayil, A.: ‘Bulk planar junctionless transistor (BPJLT): an attractive device alternative for scaling’, IEEE Electron Device Lett., 2011, 32, (3), pp. 261263.
    5. 5)
      • 5. Lee, C.-W., Ferain, I., Afzalian, A., et al: ‘Performance estimation of junctionless multigate transistors’, Solid State Electron., 2010, 54, (2), pp. 97103.
    6. 6)
      • 6. Patil, G.C., Bonge, V.H., Malode, M.M., et al: ‘Novel δ-doped partially insulated junctionless transistor for mixed signal integrated circuits’, Superlattices Microstruct., 2016, 90, (2), pp. 247256.
    7. 7)
      • 7. Zhao, D.D., Nishimura, T., Lee, C.H., et al: ‘Junctionless Ge p-channel metal-oxide-semiconductor field-effect transistors fabricated on ultrathin Ge-on-insulator substrate’, Appl. Phys. Express, 2011, 4, (3), pp. 031302031304.
    8. 8)
      • 8. Su, C.J., Tsai, T.-I., Liou, Y.L., et al: ‘Gate-all-around junctionless transistors with heavily doped polysilicon nanowire channels’, IEEE Electron Device Lett., 2011, 32, (4), pp. 521523.
    9. 9)
      • 9. Colinge, J.-P., Lee, C.-W., Ferain, I., et al: ‘Reduced electric field in junctionless transistors’, Appl. Phys. Lett., 2010, 96, (7), pp. 073510073510-3.
    10. 10)
      • 10. Choi, S.-J., Moon, D.-I., Kim, S., et al: ‘Sensitivity of threshold voltage to nanowire width variation in junctionless transistors’, IEEE Electron Device Lett., 2011, 32, (2), pp. 125127.
    11. 11)
      • 11. Lee, C.-W., Nazarov, A.N., Ferain, I., et al: ‘Low subthreshold slope in junctionless multigate transistors’, Appl. Phys. Lett., 2010, 96, (10), pp. 102106102106-3.
    12. 12)
      • 12. Baruah, R.K., Paily, R.P.: ‘Impact of high-k spacer on device performance of a junctionless transistor’, J. Comput. Electron., 2013, 12, (1), pp. 1419.
    13. 13)
      • 13. Patil, S.R., Patil, G.C., Borse, H.S., et al: ‘A novel dual-k spacer double gate junctionless transistor for digital integrated circuits’. TechConnect World Innovation Conf. (Nanotech 2015), Washington, DC., USA, June 2015, pp. 218221.
    14. 14)
      • 14. Pal, P.K., Kaushik, B.K., Dasgupta, S.: ‘Asymmetric dual-spacer trigate FinFET device-circuit codesign and its variability analysis’, IEEE Trans. Electron Devices, 2015, 62, (4), pp. 11051112.
    15. 15)
      • 15. Pal, P.K., Kaushik, B.K., Dasgupta, S.: ‘Investigation of symmetric dual-k spacer trigate FinFETs from delay perspective’, IEEE Trans. Electron Devices, 2014, 61, (11), pp. 35793585.
    16. 16)
      • 16. Nehra, D., Pal, P.K., Kaushik, B.K., et al: ‘High permittivity spacer effects on junctionless FinFET based circuit/SRAM applications’. Proc. 18th Int. Symp. VLSI Design and Test, Coimbatore, India, July 2014.
    17. 17)
      • 17. Baruah, R.K., Paily, R.P.: ‘A dual-material gate junctionless transistor with high-k spacer for enhanced analog performance’, IEEE Trans. Electron Devices, 2014, 61, (1), pp. 123128.
    18. 18)
      • 18. Patil, G.C., Qureshi, S.: ‘Engineering spacer in dopant-segregated schottky barrier SOI MOSFET for nanoscale CMOS circuits’, Semicond. Sci. Technol., 2012, 27, (04), p. 045004.
    19. 19)
      • 19. Xiong, Z., Liu, H., Zhu, C., et al: ‘Characteristics of high-k spacer offset-gated polysilicon TFTs’, IEEE Trans. Electron Devices, 2004, 51, (8), pp. 13041308.
    20. 20)
      • 20. Anderson, B.A., Bryant, A., Clark, W.F.Jr., et al: ‘Low capacitance FET for operation at subthreshold voltages’. U.S. Patent 7 009 265, 2006.
    21. 21)
      • 21. International technology roadmap for semiconductors (ITRS), Available at http://www.itrs2.net/.
    22. 22)
      • 22. Ma, M.-W., Wu, C.-H., Yang, T.-Y., et al: ‘Impact of high-k offset spacer in 65-nm node SOI devices’, IEEE Electron Device Lett., 2007, 28, (3), pp. 238241.
    23. 23)
      • 23. Loan, S.A., Qureshi, S., Iyer, S.S.K.: ‘A novel partial-ground-plane-based MOSFET on selective buried oxide: 2-D simulation study’, IEEE Trans. Electron Devices, 2010, 57, (3), pp. 671680.
    24. 24)
      • 24. Liu, Z.-H., Hu, C., Huang, J.-H., et al: ‘Threshold voltage model for deep-submicrometer MOSFETs’, IEEE Trans. Electron Devices, 1993, 40, (1), pp. 8695.
    25. 25)
      • 25. Mohapatra, N.R., Desai, M.P., Narendra, S.G., et al: ‘The effect of high-k gate dielectrics on deep submicrometer CMOS device and circuit performance’, IEEE Trans. Electron Devices, 2002, 49, (5), pp. 826831.
    26. 26)
      • 26. Zhang, R., Roy, K.: ‘Low-power high performance double-gate fully depleted SOI circuit design’, IEEE Trans. Electron Devices, 2002, 49, (5), pp. 852862.
    27. 27)
      • 27. Patil, G.C., Qureshi, S.: ‘Underlap channel metal source/drain SOI MOSFET for thermally efficient low-power mixed-signal circuits’, Microelectron. J., 2012, 43, (05), pp. 321328.
    28. 28)
      • 28. Patil, G.C., Qureshi, S.: ‘A novel δ-doped partially insulated dopant-segregated Schottky barrier SOI MOSFET for analog/RF applications’, Semicond. Sci. Technol., 2011, 26, (8), pp. 0850020800012.
    29. 29)
      • 29. Colinge, J.-P.: ‘Fully-depleted SOI CMOS for analog applications’, IEEE Trans. Electron Devices, 1998, 45, (5), pp. 10101016.
    30. 30)
      • 30. Kilchytska, V., Neve, A., Vancaillie, L., et al: ‘Influence of device engineering on the analog and RF performances of SOI MOSFETs’, IEEE Trans. Electron Devices, 2003, 50, (3), pp. 577588.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2018.5168
Loading

Related content

content/journals/10.1049/iet-cds.2018.5168
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address