http://iet.metastore.ingenta.com
1887

Inverter-based, low-power and low-voltage, new mixed-mode Gm-C filter in subthreshold CNTFET technology

Inverter-based, low-power and low-voltage, new mixed-mode Gm-C filter in subthreshold CNTFET technology

For access to this article, please select a purchase option:

Buy eFirst article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents a new low-voltage and low-power, mixed-mode, universal Gm-C filter capable of generating simultaneous filtering outputs. The proposed circuit employs only 19 inverters as operational transconductance amplifiers, and 2 grounded capacitors in carbon nanotube field-effect transistor (CNTFET) technology. However, due to the proper use of subthreshold transistors biased at ±0.25 V supply, the power consumption of the proposed circuit is reduced effectively. Furthermore, as the HSPICE simulation results show, the proposed filter consumes only 11.66 µW of power, while its total harmonic distortion is obtained −55.4 dB at 100 MHz centre frequency. Moreover, the input referred noise values at 100 MHz are reduced to 11.57 nV/ and 760 fA in voltage and current modes, respectively.

References

    1. 1)
      • 1. Kulej, T., Khateb, F.: ‘Design and implementation of sub 0.5-V OTAs in 0.18-μm CMOS’, Int. J. Circuit Theory Appl., 2018, pp. 115, https://doi.org/10.1002/cta.2465.
    2. 2)
      • 2. Kumngern, M., Khateb, F., Kulej, T.: ‘A digitally programmable gain amplifier for ultra-low-power applications’, Analog Integr. Circuits Signal Process., 2015, 85, (3), pp. 433443.
    3. 3)
      • 3. Khateb, F., Lahiri, A., Psychalinos, C., et al: ‘Digitally programmable low-voltage highly linear transconductor based on promising CMOS structure of differential difference current conveyor’, AEU-Int. J. Electron. Commun., 2015, 69, (7), pp. 10101017.
    4. 4)
      • 4. Khateb, F., Vlassis, S., Kumngern, M., et al: ‘1 V rectifier based on bulk-driven quasi-floating gate differential difference amplifiers’, Circuits Syst. Signal Process., 2015, 34, (7), pp. 20772089.
    5. 5)
      • 5. Khateb, F., Kumngern, M., Dabbous, S.B.A., et al: ‘Low-voltage low-power bulk-driven analog median filter’, AEU-Int. J. Electron. Commun., 2016, 70, (5), pp. 698706.
    6. 6)
      • 6. Khateb, F., Kulej, T., Vlassis, S.: ‘Extremely low-voltage bulk-driven tunable transconductor’, Circuits Syst. Signal Process., 2017, 36, (2), pp. 511524.
    7. 7)
      • 7. Namdari, A., Dolatshahi, M.: ‘A new ultra low-power, universal OTA-C filter in sub threshold region using bulk-drive technique’, AEU – Int. J. Electron. Commun., 2017, 82, pp. 458466.
    8. 8)
      • 8. Uhrmann, H., Kolm, R., Zimmermann, H.: ‘Analog filters in nanometer CMOS’ (Springer Science, Berlin, Germany, 2013, 1st edn.), 45.
    9. 9)
      • 9. Deng, J., Wong, H.S.P.: ‘A compact SPICE model for carbon-nanotube field-effect transistors including non-idealities and its application - part I: model of the intrinsic channel region’, IEEE Trans. Electron Devices, 2007, 54, (12), pp. 31863194.
    10. 10)
      • 10. Jafarzadehpour, F., Keshavarzian, P.: ‘Low-power consumption ternary full adder based on CNTFET’, IET Circuits Devices Syst., 2016, 10, (5), pp. 365374.
    11. 11)
      • 11. Zanjani, S.M.A., Dousti, M., Dolatshahi, M.: ‘High-precision, resistor less gas pressure sensor and instrumentation amplifier in CNT technology’, AEU-Int. J. Electron. Commun., 2018, 93, pp. 325336.
    12. 12)
      • 12. Imran, A., Hasan, M., Islam, A., et al: ‘Optimized design of a 32-nm CNFET-based low-power ultrawideband CCII’, IEEE Trans. Nanotechnol., 2012, 11, (6), pp. 11001109.
    13. 13)
      • 13. Chen, H.P., Liao, Y.Z., Lee, W.T.: ‘Tunable mixed-mode OTA-C universal filter’, Analog Integr. Circuits Signal Process., 2009, 58, (2), pp. 135141.
    14. 14)
      • 14. Kumngern, M., Junnapiya, S.: ‘Mixed-mode universal filter using OTAs’. IEEE Int. Conf. on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), Bangkok, Thailand, May 2012, pp. 119122.
    15. 15)
      • 15. Jeshvaghani, M.A., Dolatshahi, M.: ‘A low-power multi-mode and multi-output high-order CMOS universal Gm-C filter’, Analog Integr. Circuits Signal Process., 2014, 79, (1), pp. 95104.
    16. 16)
      • 16. Parvizi, M., Taghizadeh, A., Mahmoodian, H., et al: ‘A low-power, mixed mode SIMO universal Gm-C filter’, J. Circuits Syst. Comput., 2017, 26, (10), pp. 116.
    17. 17)
      • 17. Abdalla, K.K., Bhaskar, D.R., Senani, R.: ‘Configuration for realising a current-mode universal filter and dual-mode quadrature single resistor controlled oscillator’, IET Circuits Devices Syst., 2012, 6, (3), pp. 159167.
    18. 18)
      • 18. Kamat, D.V., Mohan, P.A., Prabhu, K.G.: ‘Current-mode operational transconductance amplifier-capacitor biquad filter structures based on Tarmy–Ghausi active-RC filter and second-order digital all-pass filters’, IET Circuits Devices Syst., 2010, 4, (4), pp. 346364.
    19. 19)
      • 19. Maheshwari, S., Singh, S.V., Chauhan, D.S.: ‘Electronically tunable low-voltage mixed-mode universal biquad filter’, IET Circuits Devices Syst., 2011, 5, (3), pp. 149158.
    20. 20)
      • 20. Nauta, B.: ‘A CMOS transconductance-C filter technique for very high frequencies’, IEEE J. Solid-State Circuits, 1992, 27, (2), pp. 142153.
    21. 21)
      • 21. Lo, T.Y., Hung, C.C.: ‘A 1 GHz equiripple low-pass filter with a high-speed automatic tuning scheme’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2011, 19, (2), pp. 175181.
    22. 22)
      • 22. Vlassis, S.: ‘0.5 V CMOS inverter-based tunable transconductor’, Analog Integr. Circuits Signal Process., 2012, 72, (1), pp. 289292.
    23. 23)
      • 23. Pirmohammadi, A., Zarifi, M.H.: ‘A low power tunable Gm–C filter based on double CMOS inverters in 0.35 μm’, Analog Integr. Circuits Signal Process., 2012, 71, (3), pp. 473479.
    24. 24)
      • 24. Abuelma'atti, M.T.: ‘Harmonic and intermodulation performance of carbon nanotube field-effect transistor-based and single-electron tunnelling transistor-based inverting amplifiers’, Int. J. Electron., 2011, 98, (7), pp. 847861.
    25. 25)
      • 25. Deng, J., Fu, Z., Wang, Z., et al: ‘Improved Nauta transconductor for wideband intermediate-frequency Gm-C filter’. IEEE Int. Symp. on Circuits and Systems (ISCAS), Baltimore, MD, USA, May 2017, pp. 14.
    26. 26)
      • 26. Akinwande, D., Liang, J., Chong, S., et al: ‘Analytical ballistic theory of carbon nanotube transistors: experimental validation, device physics, parameter extraction, and performance projection’, J. Appl. Phys., 2008, 104, (12), p. 124514.
    27. 27)
      • 27. McEuen, P.L., Fuhrer, M.S., Park, H.: ‘Single-walled carbon nanotube electronics’, IEEE Trans. Nanotechnol., 2002, 99, (1), pp. 7885.
    28. 28)
      • 28. Deng, J., Wong, H.S.P.: ‘A compact SPICE model for carbon-nanotube field-effect transistors including non-idealities and its application – part II: full device model and circuit performance benchmarking’, IEEE Trans. Electron Devices, 2007, 54, (12), pp. 31953205.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2018.5158
Loading

Related content

content/journals/10.1049/iet-cds.2018.5158
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address