http://iet.metastore.ingenta.com
1887

0.65 V integrable electronic realisation of integer- and fractional-order Hindmarsh–Rose neuron model using companding technique

0.65 V integrable electronic realisation of integer- and fractional-order Hindmarsh–Rose neuron model using companding technique

For access to this article, please select a purchase option:

Buy eFirst article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Some neurons like neocortical pyramidal neurons adapt with multiple time-scales, which is consistent with fractional-order differentiation. The fractional-order neuron models are therefore believed to portray the firing rate of neurons more accurately than their integer-order models. It has been studied that as the fractional order of differentiator and integrator involved in the neuron model decreases, bursting frequency of the neurons increases. The opposite effect has been observed on increasing the external excitation. In this study, integer- and fractional-order Hindmarsh–Rose (HR) neuron models have been implemented using sinh companding technique. Besides, the application of the HR neuron model in a simple network of two neurons has also been considered. The designs offer a low-voltage and low-power implementation along with the electronic tunability of the performance characteristics. Due to the use of only metal-oxide semiconductor (MOS) transistors and grounded capacitors, the proposed implementation can be integrated in chip form. On comparing with existing implementations, the implemented fractional-order and integer-order models show a better performance in terms of power consumption, supply voltage, order and flexibility. The performance of the circuits has been verified using 130 nm complementary MOS (CMOS) technology process provided by Austrian Micro Systems using HSPICE simulation software.

http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2018.5033
Loading

Related content

content/journals/10.1049/iet-cds.2018.5033
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address