http://iet.metastore.ingenta.com
1887

Efficient design of coplanar ripple carry adder in QCA

Efficient design of coplanar ripple carry adder in QCA

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

An optimal quantum-dot cellular automata (QCA) design for full adder (FA) based on an optimal three-input exclusive-OR (XOR) gate is presented. This XOR structure utilises a new configuration of cells unlike traditional gate-level approaches. The coplanar QCA FA spans over and delays of 0.5 clock cycles with 40 cells. It achieves total energy dissipation as low as 0.144 eV at 1.5 energy level. The utility of proposed gate is leveraged to design a ripple-carry adder (RCA) as a specific application. For performance evaluation, the authors use traditional cost metrics and QCA-specific cost function. Results show that proposed n-bit RCA outperforms most of the best state-of-the-art designs known in the literature. For example, cell count (area consumption) of 4, 8, and 16 bit adders is 62% (70%), 66% (84%), and 70% (86%) less than the best coplanar RCA design results. In addition, by taking the new cost metrics into account, it is found that proposed adder performs fairly well as compared to the previous adders too. These designs are realised and simulated using QCADesigner.

References

    1. 1)
      • 1. Lent, C.S., Tougaw, P.D., Porod, W., et al: ‘Quantum cellular automata’, Nanotechnology, 1993, 4, (1), pp. 4957.
    2. 2)
      • 2. Navi, K., Farazkish, R., Sayedsalehi, S., et al: ‘A new quantum-dot cellular automata full-adder’, Micro Electron. J., 2010, 41, pp. 820826.
    3. 3)
      • 3. Roohi, A., Hosseini, K.H., Sayedsalehi, S., et al: ‘A symmetric quantum-dot cellular automata design for 5-input majority gate’, J. Comput. Electron., 2014, 13, pp. 701708.
    4. 4)
      • 4. Tougaw, P.D., Lent, C.S.: ‘Logical devices implemented using quantum cellular automata’, J. Appl. Phys., 1994, 75, pp. 18181825.
    5. 5)
      • 5. Sasamal, T.N., Singh, A.K., Mohan, A.: ‘An optimal design of full adder based on 5-input majority gate in coplanar quantum-dot cellular automata’, Optik-Int. J. Light Electr. Opt., 2016, 127, (20), pp. 85768591.
    6. 6)
      • 6. Abedi, D., Jaberipur, G., Sangsefidi, M.: ‘Coplanar full adder in quantum-dot cellular automata via clock-zone based crossover’, IEEE Trans. Nanotechnol., 2015, 14, (3), pp. 497504.
    7. 7)
      • 7. Cho, H., Swartzlander, E.E.: ‘Adder designs and analyses for quantum dot cellular automata’, IEEE Trans. Nanotechnol., 2007, 6, (3), pp. 374383.
    8. 8)
      • 8. Zhang, R., Walus, K., Wang, W., et al: ‘Performance comparison of quantum-dot cellular automata adders’. Proc. IEEE Int. Symp. Circuits and Systems, Kobe, Japan, May 2005, pp. 25222526.
    9. 9)
      • 9. Pudi, V., Sridharan, K.: ‘Low complexity design of ripple carry and Brent-Kung adders in QCA’, IEEE Trans. Nanotechnol., 2012, 11, (1), pp. 105119.
    10. 10)
      • 10. Cho, H., Swartzlander, E.E.: ‘Adder and multiplier design in quantum dot cellular automata’, IEEE Trans. Comput., 2009, 58, (6), pp. 721727.
    11. 11)
      • 11. Vetteth, A., Walus, K., Jullien, G.A., et al: ‘Quantum dot cellular automata carry-look-ahead adder and barrel shifter’. Proc. IEEE Emerging Telecommun. Technol., Dallas TX, 2002, pp. 24.
    12. 12)
      • 12. Kim, K., Wu, K., Karri, R.: ‘The robust QCA adder designs using composable QCA building blocks’, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 2007, 26, (1), pp. 176183.
    13. 13)
      • 13. Wang, W., Walus, K., Jullien, G.: ‘Quantum-dot cellular automata adders’. Proc. IEEE Conf. Nanotechnology, San Francisco, CA, August 2003, pp. 461464.
    14. 14)
      • 14. Hanninen, I., Takala, J.: ‘Binary adders on quantum-dot cellular automata’, J. Sign. Process. Syst., 2010, 58, pp. 87103.
    15. 15)
      • 15. Angizi, S., Alkaldy, E., Bagherzadeh, N., et al: ‘Novel robust single layer wire crossing approach for exclusive OR sum of products logic design with quantum-dot cellular automata’, J. Low Power Electron., 2014, 10, pp. 259271.
    16. 16)
      • 16. Mohammadi, M., Mohammadi, M., Gorgin, S.: ‘An efficient design of full adder in quantum-dot cellular automata (QCA) technology’, Microelectron. J., 2016, 50, pp. 3543.
    17. 17)
      • 17. Roohi, A., DeMara, R.F., Khoshavi, N.: ‘Design and evaluation of an ultra-area-efficient fault-tolerant QCA full adder’, Microelectron. J., 2015, 46, pp. 531542.
    18. 18)
      • 18. Bruschi, F., Perini, F., Rana, V., et al: ‘An efficient quantum-dot cellular automata adder’. Proc. Design, Automation and Test in Europe, Grenoble, 2011, pp. 14.
    19. 19)
      • 19. Pudi, V., Sridharan, K.: ‘New decomposition theorems on majority logic for low-delay adder designs in quantum dot cellular automata’, IEEE Trans. Circuits Syst. II Express Briefs, 2012, 59, (10), pp. 678682.
    20. 20)
      • 20. Perri, S., Corsonello, P., Cocorullo, G.: ‘Area-delay efficient binary adders in QCA’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2014, 22, (5), pp. 11741179.
    21. 21)
      • 21. Ahmad, F., Bhat, G.M., Khademolhosseini, H., et al: ‘Towards single layer quantum-dot cellular automata adders based on explicit interaction of cells’, J. Comput. Sci., 2016, 16, pp. 815.
    22. 22)
      • 22. Liu, W., Liang, L., O'Neill, M., et al: ‘A first step towards cost functions for quantum-dot cellular automata designs’, IEEE Trans. Nanotechnol., 2014, 13, (3), pp. 476487.
    23. 23)
      • 23. Walus, K., Jullien, G.A.: ‘Design tools for an emerging SoC technology: quantum-dot cellular automata’. Proc. IEEE, 2006, 94, (6), pp. 12251244.
    24. 24)
      • 24. Lent, C., Liu, M., Lu, Y.: ‘Bennett clocking of quantum-dot cellular automata and the limits to binary logic scaling’, Nanotechnology, 2006, 17, pp. 42404252.
    25. 25)
      • 25. Crocker, M., Niemier, M., Hu, X.S., et al: ‘Molecular QCA design with chemically reasonable constraints’, ACM J. Emerging Technol. Comput. Syst., 2008, 4, (2), article no. 9, pp. 121.
    26. 26)
      • 26. Kim, K., Wu, K., Karri, R.: ‘Towards designing robust QCA architectures in the presence of sneak noise paths’. Proc. Conf. Design Automation and Test in Europe, Munich, Germany, 2005, pp. 12141219.
    27. 27)
      • 27. Lent, C.S., Tougaw, P.D., Porod, W.: ‘Quantum cellular automata: the physics of computing and arrays of quantum dot molecules’. Proc. Workshop on Physics and Computing. IEEE Computer Society Press: Dallas, TX, 1994, pp. 513.
    28. 28)
      • 28. Toth, G., Lent, C.S.: ‘Quasi-adiabatic switching for metal-island quantum-dot cellular automata’, J. Appl. Phys., 1999, 85, pp. 29772984.
    29. 29)
      • 29. Toth, G., Lent, C.S.: ‘Quantum computing with quantum-dot cellular automata’, Phys. Rev. A, 2000, 63, pp. 19.
    30. 30)
      • 30. Lent, C.S., Isaksen, B.: ‘Clocked molecular quantum-dot cellular automata’, IEEE Trans. Electron. Dev., 2003, 50, (9), pp. 18901895.
    31. 31)
      • 31. Parish, M.C.B.: ‘Modeling of physical constraints on bistable magnetic quantum cellular automata’, Ph.D. thesis, University of London, UK, 2003.
    32. 32)
      • 32. Sasamal, T.N., Singh, A.K., Ghanekar, U.: ‘Design of non-restoring binary array divider in majority logic-based QCA’, Electron. Lett., 2016, 52, (24), pp. 20012003.
    33. 33)
      • 33. Walus, K., Dysart, T.J., Jullien, G.A., et al: ‘QCA designer: a rapid design and simulation tool for quantum-dot cellular automata’, IEEE Trans. Nanotechnol., 2004, 3, pp. 2631.
    34. 34)
      • 34. Timler, J., Lent, C.S.: ‘Power gain and dissipation in quantum-dot cellular automata’, J. Appl. Phys., 2002, 91, pp. 823831.
    35. 35)
      • 35. Srivastava, S., Asthana, A., Bhanja, S., et al: ‘QCAPro-an error power estimation tool for QCA circuit design’. Proc. IEEE Int. Symp. Circuits System, 2011, pp. 23772380.
    36. 36)
      • 36. Sheikhfaal, S., Angizi, S., Sarmadi, S., et al: ‘Designing efficient QCA logical circuits with power dissipation analysis’, Microelectron. J., 2015, 46, (6), pp. 462471.
    37. 37)
      • 37. Mustafa, M., Beigh, M.R.: ‘Design and implementation of quantum cellular automata based novel parity generator and checker circuits with minimum complexity and cell count’, Indian J. Pure Appl. Phys., 2013, 51, (1), pp. 6066.
    38. 38)
      • 38. Beigh, M.R., Mustafa, M., Ahmad, F.: ‘Performance evaluation of efficient XOR structures in quantum-dot cellular automata (QCA)’, Circuits Syst., 2013, 4, pp. 147156.
    39. 39)
      • 39. Singh, G., Sarin, R.K., Raj, B.: ‘A novel robust exclusive-OR function implementation in QCA nanotechnology with energy dissipation analysis’, J. Comput. Electron., 2016, 15, pp. 455465.
    40. 40)
      • 40. Landauer, R.: ‘Irreversibility and heat generation in the computing process’, IBM J. Res. Dev., 1961, 5, pp. 183191.
    41. 41)
      • 41. Berut, A., Arakelyan, A., Petrosyan, A., et al: ‘Experimental verification of Landauer's principle linking information and thermodynamics’, Nature, 2012, 483, (7388), pp. 187189.
    42. 42)
      • 42. Liu, W., Srivastava, S., Lu, L., et al: ‘Are QCA cryptographic circuits resistant to power analysis attack?’, IEEE Trans. Nanotechnol., 2012, 11, (6), pp. 12391251.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2018.0020
Loading

Related content

content/journals/10.1049/iet-cds.2018.0020
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address