Precision analysis with analytical bit-width optimisation process for linear circuits with feedbacks

Precision analysis with analytical bit-width optimisation process for linear circuits with feedbacks

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Finding the best possible word length to accuracy trade off seems to be an obvious design task. However, the literature and carful design reviews show that word lengths are often overestimated to put the data accuracy at the safe side. This study proposes a mathematical process to balance that trade off. It describes an analytical optimisation technique that considers every interconnection and it shows clear improvement with respect to published results. To allow reproducibility of their work, detailed procedures are provided. Implementation results are presented for different configurations of infinite impulse response filters. More, the impact of the proposed bit-width optimisation on the filter poles and zeros is provided to show the effectiveness of the proposed solution. Their solution provides overall improvement going up to 17% of the circuit's area with respect to existing methods. The proposed technique for uniform fractional bits allocation runs in a negligible time independently of the targeted accuracy.


    1. 1)
      • 1. Pang, Y., Radecka, K., Zilic, Z.: ‘An efficient hybrid engine to perform range analysis and allocate integer bit-widths for arithmetic circuits’. Proc. ASP-DAC, Yokohama, Japan, 2011, pp. 455460.
    2. 2)
      • 2. Lee, D., Gaffar, A.A., Cheung, R.C.C., et al: ‘Accuracy-guaranteed bit-width optimization’, IEEE Trans. Comput-Aided Design, 2006, 25, pp. 19902000.
    3. 3)
      • 3. Kinsman, A.B., Nicolici, N.: ‘Bit-width allocation for hardware accelerators for scientific computing using SAT-modulo theory’, IEEE Trans. Comput.-Aided Design, 2010, 29, pp. 405413.
    4. 4)
      • 4. Radecka, K., Zilic, Z.: ‘Using arithmetic transform for verification of datapath circuits via error modeling’. Proc. IEEE VLSI Test Symp, May 2000, pp. 271277.
    5. 5)
      • 5. Lee, D., Gaffar, A.A., Mencer, O., et al: ‘Minibit: bit-width optimization via affine arithmetic’ (DAC, Anaheim, CA, USA, 2005), pp. 837840.
    6. 6)
      • 6. Osborne, W.G., Cheung, R.C.C., Coutinho, J.G.F., et al: ‘Automatic accuracy-guaranteed bit-width optimization for fixed and floating-point systems’. Proc. Int. Conf. Field Programmable Logic and Applications (FPL), Amsterdam, Netherlands, 2007, pp. 617620.
    7. 7)
      • 7. Shi, C., Brodersen, R.: ‘Automated fixed-point data-type optimization tool for signal processing and communication systems’. Proc. Des. Autom. Conf, San Diego, CA, USA, 2004, pp. 478483.
    8. 8)
      • 8. Kum, K., Sung, W.: ‘Combined word-length optimization and high level synthesis of digital signal processing systems’, IEEE Trans. Comput. Aided Design, 2001, 20, pp. 921930.
    9. 9)
      • 9. Gaffar, A., Mencer, O., Luk, W., et al: ‘Unifying bit-width optimization for fixed-point and floating-point designs’. Proc. IEEE Symp. Field-Programmable Custom Computing, Napa, CA, USA, March 2004, pp. 7988.
    10. 10)
      • 10. Radecka, K., Zilic, Z.: ‘Arithmetic transforms of imprecise datapaths by Taylor series conversion’. Proc. Int. Conf. Electron. Circuits System, Nice, France, 2006, pp. 696699.
    11. 11)
      • 11. Oppenheim, A.V., Weinstein, C.J.: ‘Effects of finite register length in digital filtering and the fast Fourier transform’. Proc. IEEE, 1972, 60, pp. 957976.
    12. 12)
      • 12. Menard, D., Rocher, R., Sentieys, O.: ‘Analytical fixed-point accuracy evaluation in linear time-invariant systems’, IEEE Trans. Circuits Syst. I Regul. Pap., 2008, 55, pp. 31973208.
    13. 13)
      • 13. Carletta, J., Veillette, R., Krach, F., et al: ‘Determining appropriate precisions for signals in fixed-point IIR filters’. Proc. Design Automation Conf., June 2003, pp. 656661.
    14. 14)
      • 14. Sarbishei, O., Pang, Y., Radecka, K.: ‘Analysis of range and precision for fixed-point linear arithmetic circuits with feedbacks’. Proc. IEEE HLDVT, Anaheim, FL, USA, June 2010, pp. 2532.
    15. 15)
      • 15. Sarbishei, O., Radecka, K., Zilic, Z.: ‘Analytical optimization of bit-widths in fixed-point LTI systems’, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 2012, 31, pp. 343355.
    16. 16)
      • 16. Lamini, E., Bellal, R., Tagzout, S., et al: ‘Enhanced bit-width optimization for linear circuits with feedbacks’. Design and Test Symp. (IDT), Algiers, Algeria, December 2014, pp. 168173.
    17. 17)
      • 17. Vakili, S., Langlois, J.M.P., Bois, G.: ‘Enhanced precision analysis for accuracy-aware bit-width optimization using affine arithmetic’, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 2013, 32, pp. 18531865.
    18. 18)
      • 18. Chichyang, C.: ‘High-order Taylor series approximation for efficient computation of elementary functions’, IET Comput. Digit. Tech., 2015, 9, pp. 328335.
    19. 19)
      • 19. De Caro, D., Napoli, E., Esposito, D., et al: ‘Minimizing coefficients wordlength for piecewise-polynomial hardware function evaluation with exact or faithful rounding’, IEEE Trans. Circuits Syst. I Regul. Pap., 2017, 64, pp. 11871200.
    20. 20)
      • 20. Mahdieh, G., Alizadeh, B., Forouzandeh, B.: ‘Improved range analysis in fixed-point polynomial data-path’, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 2017, 36, pp. 19251929.
    21. 21)
      • 21. Pang, Y., Yan, Y., Lin, J., et al: ‘ICAT: engine to perform range analysis and allocate bit-widths for arithmetic datapaths’, J. Circuits Syst. Comput., 2015, 24, p. 1550020.
    22. 22)
      • 22. Pang, Y., Yan, Y., Lin, J., et al: ‘Designing optimized imprecise fixed-point arithmetic circuits specified by polynomials with various constraints’, J. −Circuits Syst. Comput., 2014, 23, p. 1450010.
    23. 23)
      • 23. Pang, Y., Radecka, K., Zilic, Z.: ‘Optimization of imprecise circuits represented by Taylor series and real-valued polynomials’, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 2010, 29, pp. 11771190.
    24. 24)
      • 24. Jackson, L.B.: ‘On the interaction of round-off noise and dynamic range in digital filters’, Bell Syst. Tech. J., 1970, 49, pp. 159184.
    25. 25)
      • 25. López, J.A., Caffarena, G., Carreras, C., et al: ‘Fast and accurate computation of the round-off noise of linear time-invariant systems’, IET Circuits Dev. Syst., 2008, 02, pp. 393408.
    26. 26)
      • 26. Caffarena, G., Carreras, C., Lopez, J., et al: ‘SQNR estimation of fixed-point DSP algorithms’, Int. J. Adv. Signal Process., 2010, 10, pp. 111.

Related content

This is a required field
Please enter a valid email address