Broadband reconfigurable matching network using a non-uniform transmission line

Broadband reconfigurable matching network using a non-uniform transmission line

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, the authors propose the use of distributed elements interconnected with switches to construct a reconfigurable matching network (RMN). Several RMNs are constructed using tunable lumped elements. However, this technique increases the system complexity because of the use of digital-to-analogue converters and synthesis algorithms. In this study, the proposed RMN employs a non-uniform transmission line with adjustable characteristic impedances, which are controlled by opening or closing the switches. While previous studies on non-uniform transmission lines have aimed to investigate the fixed configurations, this topology is designed to be an RMN that satisfies the design challenges. The maximum dimension is 0.2 times the guided wavelength of the low operational frequency, and five switches are used; however, the matchable impedances cover an extensive range of the Smith chart, and the RMN successfully tunes inherently unmatched antennas to operate at a target frequency band that depicts a fractional bandwidth of 60%. Additionally, the evaluated results depict that the fabricated RMN illustrates low insertion loss and high transducer gain and that it achieves both antenna-mismatch compensation and antenna-bandwidth extension.


    1. 1)
      • 1. Sánchez-Pérez, C., Mingo, J., García-Dúcar, P., et al: ‘Dynamic load modulation with a reconfigurable matching network for efficiency improvement under antenna mismatch’, IEEE Trans. Circuits Syst. II., Exp. Pap., 2011, 58, (12), pp. 892896.
    2. 2)
      • 2. Sjöblom, P., Sjöland, H.: ‘An adaptive impedance tuning CMOS circuit for ISM 2.4 GHz band’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2005, 52, (6), pp. 11151124.
    3. 3)
      • 3. Yumin, L., Peroulis, D., Mohammadi, S., et al: ‘A MEMS reconfigurable matching network for a class AB amplifier’, IEEE Microw Wirel. Compon. Lett., 2003, 13, (10), pp. 437439.
    4. 4)
      • 4. El-Nozahi, M., Sánchez-Sinencio, E., Entesari, K.: ‘A CMOS low-noise amplifier with reconfigurable input matching network’, IEEE Trans. Microw. Theory Tech., 2009, 57, (5), pp. 10541062.
    5. 5)
      • 5. Vaha-Heikkila, T., Lahdes, M., Kantanen, M., et al: ‘On-wafer noise-parameter measurements at W-band’, IEEE Trans. Microw. Theory Tech., 2003, 51, (6), pp. 16211628.
    6. 6)
      • 6. McIntosh, C.E., Pollard, R.D., Miles, R.E.: ‘Novel MMIC source-impedance tuners for on-wafer microwave noise-parameter measurements’, IEEE Trans. Microw. Theory Tech., 1999, 47, (2), pp. 125131.
    7. 7)
      • 7. Smith, N.J., Chen, C.-C., Volakis, J.L.: ‘An improved topology for adaptive agile impedance tuners’, IEEE Antennas Wirel. Propag. Lett., 2013, 12, pp. 9295.
    8. 8)
      • 8. Whatley, R.B., Zhou, Z., Melde, K.L.: ‘Reconfigurable RF impedance tuner for match control in broadband wireless devices’, IEEE Trans. Antennas Propag., 2006, 54, (2), pp. 470478.
    9. 9)
      • 9. Bezooijen, A., Jongh, M., Straten, F., et al: ‘Adaptive impedance-matching techniques for controlling L networks’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2010, 57, (2), pp. 495505.
    10. 10)
      • 10. Sánchez-Pérez, C., Mingo, J., García-Dúcar, P., et al: ‘Performance improvement of mobile DVB-H terminals using a reconfigurable impedance tuning network’, IEEE Trans. Consum. Electron., 2009, 55, (4), pp. 18751882.
    11. 11)
      • 11. Papapolymerou, J., Lange, K.L., Goldsmith, C.L., et al: ‘Reconfigurable double-stub tuners using MEMS switches for intelligent RF front-ends’, IEEE Trans. Microw. Theory Tech., 2003, 51, (1), pp. 271278.
    12. 12)
      • 12. Simons, R.N., Lee, R.Q.: ‘Impedance matching of tapered slot antenna using a dielectric transformer’, Electron. Lett., 1998, 34, (24), pp. 22872289.
    13. 13)
      • 13. Deslandes, D., Boukadoum, M.: ‘Nonuniform microstrip lines analysis using neural networks’. 8th IEEE Int. New Circuits and Systems Conf. (NEWCAS), Montreal, Canada, June 2010, pp. 221224.
    14. 14)
      • 14. Khalaj-Amirhosseini, M.: ‘Closed form solutions for nonuniform transmission lines’, Prog. Electromagn. Res. B., 2008, 2, pp. 243258.
    15. 15)
      • 15. Lu, K.: ‘An efficient method for analysis of arbitrary nonuniform transmission lines’, IEEE Trans. Microw. Theory Tech., 1997, 45, (1), pp. 914.
    16. 16)
      • 16. Roy, M.L., Perennec, A., Toutain, S., et al: ‘The continuously varying transmission-line technique – application to filter design’, IEEE Trans. Microw. Theory Tech., 1999, 47, (9), pp. 16801687.
    17. 17)
      • 17. Jiang, B., Smith, J.R., Philipose, M., et al: ‘Energy scavenging for inductively coupled passive RFID systems’, IEEE Trans. Instrum. Meas., 2007, 56, (1), pp. 118125.
    18. 18)
      • 18. Po, F.C.W., Foucauld, E., Morche, D., et al: ‘A novel method for synthesizing an automatic matching network and its control unit’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2011, 58, (9), pp. 22252233.
    19. 19)
      • 19. Casado, F., Arriola, A., Parrón, J., et al: ‘Reconfigurable matching network for 2.45 GHz printed IFA on metallic environments’. Loughborough Antennas & Propagation Conf. (LAPC), Loughborough, UK, November 2012, pp. 14.
    20. 20)
      • 20. Domingue, F., Fouladi, S., Kouki, A.B., et al: ‘Design methodology and optimization of distributed MEMS matching networks for low frequency applications’, IEEE Trans. Microw. Theory Tech., 2009, 57, (12), pp. 30303041.
    21. 21)
      • 21. Jeong, H.T., Kim, J.E., Chang, I.S., et al: ‘Tunable impedance transformer using a transmission line with variable characteristic impedance’, IEEE Trans. Microw. Theory Tech., 2005, 53, (8), pp. 25872593.
    22. 22)
      • 22. Chen, Y.S., Liu, P.A.: ‘A self-structuring impedance matcher for in-vehicle digital audio broadcasting applications’, IEEE Trans. Antennas Propag., 2017, 65, (8), pp. 42204229.
    23. 23)
      • 23. Tuysuz, B., Urbina, J., Lind, F.D.: ‘Development of a passive VHF radar system using software-defined radio for equatorial plasma instability studies’, Radio Sci.., 2013, 48, (4), pp. 416426.

Related content

This is a required field
Please enter a valid email address