http://iet.metastore.ingenta.com
1887

Low-power low data rate FM-UWB receiver front end

Low-power low data rate FM-UWB receiver front end

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study introduces a frequency modulated ultra-wideband (FM-UWB) receiver optimised for low power and fast start-up. The receiver consists of a front end amplifier converting a frequency modulated signal to an amplitude modulated signal which is applied to an envelope detector. The receiver front end is for 500 MHz channels centred at 3450 and 3950 MHz. The amplifier uses passive gain and four cascaded gain stages to achieve high radio-frequency gain without the need for super-regeneration. By simplifying the architecture this way, the front end has a 5 μs wake-up time to enable efficient duty-cycling. The measured front end receives a signal at −68 dBm while consuming 600 μW of power (excluding a test buffer) from a 1 V supply. Fabrication was done using the IBM 130-nm CMOS technology on a 1 mm × 1 mm loose die.

References

    1. 1)
      • X. Tan , Z. Sun , J.M. Jornet .
        1. Tan, X., Sun, Z., Jornet, J.M., et al: ‘Increasing indoor spectrum sharing capacity using smart reflect-array’. 2016 IEEE Int. Conf. Communications (ICC), May 2016, pp. 16.
        . 2016 IEEE Int. Conf. Communications (ICC) , 1 - 6
    2. 2)
      • J.F.M. Gerrits , J.R. Farserotu , J.R. Long .
        2. Gerrits, J.F.M., Farserotu, J.R., Long, J.R.: ‘FM-UWB: A low-complexity constant envelope LDR UWB approach’. 13th IEEE Int. Conf. Electronics, Circuits and Systems, 2006, ICECS ‘06, December 2006, pp. 797801.
        . 13th IEEE Int. Conf. Electronics, Circuits and Systems, 2006, ICECS ‘06 , 797 - 801
    3. 3)
      • L.M. Borges , R. Chávez-Santiago , N. Barroca .
        3. Borges, L.M., Chávez-Santiago, R., Barroca, N., et al: ‘Radio-frequency energy harvesting for wearable sensors’, Healthc. Technol. Lett., 2015, 2, pp. 2227.
        . Healthc. Technol. Lett. , 22 - 27
    4. 4)
      • Z.H. Abdul Rahman , M.H.M. Khir , Z.A. Burhanudin .
        4. Abdul Rahman, Z.H., Khir, M.H.M., Burhanudin, Z.A., et al: ‘Design of CMOS based thermal energy generator for energy harvesting’. 2014 5th Int. Conf. Intelligent and Advanced Systems (ICIAS), June 2014, pp. 16.
        . 2014 5th Int. Conf. Intelligent and Advanced Systems (ICIAS) , 1 - 6
    5. 5)
      • S. Monfray , O. Puscasu , G. Savelli .
        5. Monfray, S., Puscasu, O., Savelli, G., et al: ‘Innovative thermal energy harvesting for zero power electronics’. 2012 IEEE Silicon Nanoelectronics Workshop (SNW), June 2012, pp. 14.
        . 2012 IEEE Silicon Nanoelectronics Workshop (SNW) , 1 - 4
    6. 6)
      • T.D. Nguyen , J.Y. Khan , D.T. Ngo .
        6. Nguyen, T.D., Khan, J.Y., Ngo, D.T.: ‘An adaptive mac protocol for RF energy harvesting wireless sensor networks’. 2016 IEEE Global Communications Conf. (GLOBECOM), December 2016, pp. 16.
        . 2016 IEEE Global Communications Conf. (GLOBECOM) , 1 - 6
    7. 7)
      • R. Atat , H. Chen , L. Liu .
        7. Atat, R., Chen, H., Liu, L., et al: ‘Fundamentals of spatial RF energy harvesting for D2D cellular networks’. 2016 IEEE Global Communications Conf. (GLOBECOM), December 2016, pp. 16.
        . 2016 IEEE Global Communications Conf. (GLOBECOM) , 1 - 6
    8. 8)
      • V. Kopta , D. Barras , C.C. Enz .
        8. Kopta, V., Barras, D., Enz, C.C.: ‘An approximate zero if FM-UWB receiver for high density wireless sensor networks’, IEEE Trans. Microw. Theory Tech., 2017, PP, (99), pp. 112.
        . IEEE Trans. Microw. Theory Tech. , 99 , 1 - 12
    9. 9)
      • N. Saputra , J.R. Long .
        9. Saputra, N., Long, J.R.: ‘A fully-integrated, short-range, low data rate FM-UWB transmitter in 90 nm CMOS’, IEEE J. Solid-State Circuits, 2011, 46, (7), pp. 16271635.
        . IEEE J. Solid-State Circuits , 7 , 1627 - 1635
    10. 10)
      • S. Ullah , M. Chen , K. Kwak .
        10. Ullah, S., Chen, M., Kwak, K.: ‘Throughput and delay analysis of IEEE 802.15.6-based CSMA/CA protocol’, J. Med. Syst., 2012, 36, (6), pp. 38753891.
        . J. Med. Syst. , 6 , 3875 - 3891
    11. 11)
      • 11. Federal Communications Commission: ‘Fcc 02-48: In Revision of Part 15 of the Comission's Rules Regarding Ultra-Wideband Transmission Systems, ET Docket 98-153, April 2002, p. 26.
        .
    12. 12)
      • N. Saputra , J.R. Long , J.J. Pekarik .
        12. Saputra, N., Long, J.R., Pekarik, J.J.: ‘A low-power digitally controlled wideband FM transceiver’. 2014 IEEE Radio Frequency Integrated Circuits Symp., June 2014, pp. 2124.
        . 2014 IEEE Radio Frequency Integrated Circuits Symp. , 21 - 24
    13. 13)
      • N. Saputra , J.R. Long .
        13. Saputra, N., Long, J.R.: ‘A fully integrated wideband FM transceiver for low data rate autonomous systems’, IEEE J. Solid-State Circuits, 2015, 50, (5), pp. 11651175.
        . IEEE J. Solid-State Circuits , 5 , 1165 - 1175
    14. 14)
      • V. Kopta , D. Barras , C.C. Enz .
        14. Kopta, V., Barras, D., Enz, C.C.: ‘A 420 μW, 4 GHz approximate zero if FM-UWB receiver for short-range communications’. 2016 IEEE Radio Frequency Integrated Circuits Symp. (RFIC), May 2016, pp. 218221.
        . 2016 IEEE Radio Frequency Integrated Circuits Symp. (RFIC) , 218 - 221
    15. 15)
      • S.E. Whitehall , C.E. Saavedra .
        15. Whitehall, S.E., Saavedra, C.E.: ‘A compact 640 μw FM ultra-wideband transmitter’, IET Circuits, Devices, Syst., in press.
        . IET Circuits, Devices, Syst.
    16. 16)
      • N. Saputra , J.R. Long .
        16. Saputra, N., Long, J.R.: ‘A short-range low data-rate regenerative FM-UWB receiver’, Trans. IEEE Microw. Theory Tech., 2011, 59, (4), pp. 11311140.
        . Trans. IEEE Microw. Theory Tech. , 4 , 1131 - 1140
    17. 17)
      • B. Zhou , F. Chen , W. Rhee .
        17. Zhou, B., Chen, F., Rhee, W., et al: ‘A reconfigurable FM-UWB transceiver for short-range wireless communications’, IEEE Microw. Wirel. Compon. Lett., 2013, 23, (7), pp. 371373.
        . IEEE Microw. Wirel. Compon. Lett. , 7 , 371 - 373
    18. 18)
      • R. Thirunarayanan , D. Ruffieux , C. Enz .
        18. Thirunarayanan, R., Ruffieux, D., Enz, C.: ‘Enabling highly energy efficient WSN through PLL-free, fast wakeup radios’. 2015 IEEE Int. Symp. Circuits and Systems (ISCAS), 2015, pp. 25732576.
        . 2015 IEEE Int. Symp. Circuits and Systems (ISCAS) , 2573 - 2576
    19. 19)
      • S. Whitehall , C.E. Saavedra .
        19. Whitehall, S., Saavedra, C.E.: ‘A very high-sensitivity CMOS power detector for high data rate biotelemetry applications’. 2014 IEEE 12th Int. New Circuits and Systems Conf. (NEWCAS), June 2014, pp. 145148.
        . 2014 IEEE 12th Int. New Circuits and Systems Conf. (NEWCAS) , 145 - 148
    20. 20)
      • B. Zhou , J. Qiao , R. He .
        20. Zhou, B., Qiao, J., He, R., et al: ‘A gated FM-UWB system with data-driven front-end power control’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2012, 59, (6), pp. 13481358.
        . IEEE Trans. Circuits Syst. I, Regul. Pap. , 6 , 1348 - 1358
    21. 21)
      • T. Wada , M. Ikebe , E. Sano .
        21. Wada, T., Ikebe, M., Sano, E.: ‘60-GHz, 9-μw wake-up receiver for short-range wireless communications’. 2013 Proc. of the ESSCIRC (ESSCIRC), 2013, pp. 383386.
        . 2013 Proc. of the ESSCIRC (ESSCIRC) , 383 - 386
    22. 22)
      • Y. Zhou , M.Y.W. Chia .
        22. Zhou, Y., Chia, M.Y.W.: ‘A low-power ultra-wideband CMOS true RMS power detector’, IEEE Trans. Microw. Theory Tech., 2008, 56, (5), pp. 10521058.
        . IEEE Trans. Microw. Theory Tech. , 5 , 1052 - 1058
    23. 23)
      • S.E. Whitehall , C.E. Saavedra .
        23. Whitehall, S.E., Saavedra, C.E.: ‘1.5 μw wake-up-receiver for biotelemetry applications’, Microw. Opt. Technol. Lett., 2017, 59, (11), pp. 28842890.
        . Microw. Opt. Technol. Lett. , 11 , 2884 - 2890
    24. 24)
      • B. Zhou , P. Chiang .
        24. Zhou, B., Chiang, P.: ‘Short-range low-data-rate FM-UWB transceivers: overview, analysis, and design’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2016, 63, (3), pp. 423435.
        . IEEE Trans. Circuits Syst. I, Regul. Pap. , 3 , 423 - 435
    25. 25)
      • F. Chen , W. Zhang , W. Rhee .
        25. Chen, F., Zhang, W., Rhee, W., et al: ‘A 3.8-mw 3.5 μw; 4-GHz regenerative FM-UWB receiver with enhanced linearity by utilizing a wideband LNA and dual bandpass filters’, IEEE Trans. Microw. Theory Tech., 2013, 61, (9), pp. 33503359.
        . IEEE Trans. Microw. Theory Tech. , 9 , 3350 - 3359
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2017.0507
Loading

Related content

content/journals/10.1049/iet-cds.2017.0507
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address