http://iet.metastore.ingenta.com
1887

Fault-tolerant design and analysis of QCA-based circuits

Fault-tolerant design and analysis of QCA-based circuits

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Emerging nanoscale computing structure quantum-dot cellular automata (QCA) is evolving as a possible replacement for complementary metal–oxide–semiconductor technology in near future. Being a new technology, it is prone to various types of fabrication-related faults and process variations. So, QCA-based circuits are prone to errors, and therefore pose significant reliability-related issues. Hence, there is an emerging need to design fault-tolerant QCA-based circuits to mitigate the reliability issues. This study first presents QCA-based new designs of 2-input Exclusive-OR gate and 1 bit full adder using conventional design approach without redundant QCA cells. Then, the fault tolerance has been implemented in these designs by introducing redundant QCA cells. The proposed circuits exhibit significant improvements in fault-tolerant capability against cell omission, misalignment, displacement, and extra cell deposition defects. The proposed fault-tolerant designs have been compared with existing designs in terms of generalised design metrics of QCA circuits. Energy dissipation results have been computed for the proposed fault-tolerant circuits using accurate QCAPro power estimator tool. Influence of temperature variations on the polarisation of the proposed fault-tolerant circuits has also been investigated. The functionality of the proposed circuits has been verified with QCADesigner version 2.0.3 tool.

References

    1. 1)
      • 1. Moore, G.E.: ‘Cramming more components onto integrated circuits’, Electron. Mag., 1965, 38, (8), pp. 114117.
    2. 2)
      • 2. Emerging Research Devices (ERD)’. Available athttp://www.itrs2.net/itrs-reports.html.2014, accessed on October 15, 2017.
    3. 3)
      • 3. Bourianoff, G.: ‘The future of nanocomputing’, IEEE Comput. Mag., 2003, 36, (8), pp. 4453.
    4. 4)
      • 4. Lent, C.S., Taugaw, P.D., Porod, W., et al: ‘Quantum cellular automata’, Nanotechnology, 1993, 4, (1), pp. 4957.
    5. 5)
      • 5. Lent, C.S., Taugaw, P.D.: ‘Lines of interacting quantum-dot cells: a binary wire’, J. Appl. Phys., 1993, 74, pp. 62276233.
    6. 6)
      • 6. Tahoori, M.B., Momenzadeh, M., Huang, J., et al: ‘Testing of quantum cellular automata’, IEEE Trans. Nanotechnol., 2003, 3, (4), pp. 432442.
    7. 7)
      • 7. Tahoori, M.B., Momenzadeh, M., Huang, J., et al: ‘Quantum cellular automata: new defects and faults for new devices’. Proc. 18th Int. Symp. Parallel and Distributed Processing, 2004, pp. 207214.
    8. 8)
      • 8. Dysart, T.J., Kogge, P.M., Lent, C.S., et al: ‘An analysis of missing cell defects in quantum-dot cellular automata’. IEEE Int. Workshop Design and Test of Defect-Tolerant Nanoscale Architectures (NANOARCH), 2005, pp. 18.
    9. 9)
      • 9. Ma, X., Lombardi, F.: ‘Fault tolerant schemes for QCA systems’. Int. Symp. Defect and Fault Tolerance of VLSI Systems, 2008, pp. 236244.
    10. 10)
      • 10. Sen, B., Sahu, Y., Mukherjee, R., et al: ‘On the reliability of majority logic structure in quantum-dot cellular automata’, Microelectron. J., 2016, 47, pp. 718.
    11. 11)
      • 11. Lyons, R.E., Venderkulk, W.: ‘The use of triple modular redundancy to improve computer reliability’, IBM J., 1962, 6, pp. 200209.
    12. 12)
      • 12. Neumann, V.: ‘Probabilistic logics and the synthesis of reliable organisms from unreliable components’, Auto Stand., Ann. Math. Stand., 1956, 34, pp. 4398.
    13. 13)
      • 13. Roy, S., Beiu, V.: ‘Majority multiplexing – economical redundant fault-tolerant designs for nanoarchitectures’, IEEE Trans. Nanotechnol., 2005, 4, pp. 441451.
    14. 14)
      • 14. Singh, G., Sarin, R.K., Raj, B.: ‘A novel robust exclusive-OR function implementation in QCA nanotechnology with energy dissipation analysis’, J. Comput. Electron., 2016, 15, (2), pp. 455465.
    15. 15)
      • 15. Bahar, A.N., Waheed, S., Hossain, N., et al: ‘A novel 3-input XOR function implementation in quantum dot-cellular automata with energy dissipation analysis’, Alex Eng. J., 2017, doi: 10.1016/j.aej.2017.01.022.
    16. 16)
      • 16. Beigh, M.R., Mustafa, M., Ahmad, F.: ‘Performance evaluation of efficient XOR structures in quantum-dot cellular automata (QCA)’, Circuits Syst., 2013, 4, pp. 147156.
    17. 17)
      • 17. Taugaw, P.D., Lent, C.S.: ‘Logical devices implemented using quantum cellular automata’, J. Appl. Phys., 1994, 75, pp. 18181825.
    18. 18)
      • 18. Walus, K., Dysart, T., Jullien, G., et al: ‘QCA designer: a rapid design and simulation tool for quantum-dot cellular automata’, IEEE Trans. Nanotechnol., 2004, 3, (1), pp. 2629.
    19. 19)
      • 19. Mohammadi, Z., Mohammadi, M.: ‘Implementing a one-bit reversible full adder using quantum-dot cellular automata’, Quantum Inf. Proc., 2014, 12, pp. 21272147.
    20. 20)
      • 20. Wang, W., Walus, K., Jullien, G.A.: ‘Quantum-dot cellular automata adders’. Third IEEE Conf. Nanotechnology, 2003, pp. 461464.
    21. 21)
      • 21. Zhang, R., Walus, K., Wang, W., et al: ‘Performance comparison of quantum-dot cellular automata adders’. Int. Symp. Circuits Systems, 2005, pp. 25222526.
    22. 22)
      • 22. Hanninen, I., Takala, J.: ‘Robust adders based on quantum-dot cellular automata’. IEEE Int. Conf. Appl. Specific Systems Architecture Processors, 2007, pp. 391396.
    23. 23)
      • 23. Cho, H., Swartzlander, E.E.: ‘Adder and multiplier design in quantum-dot cellular automata’, IEEE Trans. Comput., 2009, 58, (6), pp. 721727.
    24. 24)
      • 24. Navi, K., Farazkish, R., Sayedsalehi, S., et al: ‘A new quantum-dot cellular automata full-adder’, Microelectron. J., 2010, 41, pp. 820826.
    25. 25)
      • 25. Singh, G., Raj, B., Sarin, R.K.: ‘Design and analysis of a new efficient coplanar quantum-dot cellular automata adder’, Ind. J. Pure Appl. Phys., 2017, 55, pp. 97103.
    26. 26)
      • 26. Singh, G., Raj, B., Sarin, R.K.: ‘A review of quantum-dot cellular automata based adders’, Int. J. Hybrid Inf. Technol., 2017, 10, (4), pp. 4158.
    27. 27)
      • 27. Fijany, A., Toomarian, B.: ‘New design for quantum dots cellular automata to obtain fault tolerant logic gates’, Int. J. Nanoparticle Res., 2001, 3, (1), pp. 2737.
    28. 28)
      • 28. Huang, J., Momenzadeh, M., Lombardi, F.: ‘On the tolerance to manufacturing defects in molecular QCA tiles for processing-by-wire’, J. Electron. Test., 2007, 23, (2–3), pp. 163174.
    29. 29)
      • 29. Roohi, A., DeMara, R.F., Khoshavi, N.: ‘Design and evaluation of an ultra-area-efficient fault-tolerant QCA full adder’, Microelectron. J., 2015, 46, (6), pp. 531542.
    30. 30)
      • 30. Farazkish, R., Khodaparast, F.: ‘Design and characterization of a new fault-tolerant full-adder for quantum-dot cellular automata’, Microprocess. Microsyst., 2015, 39, pp. 426433.
    31. 31)
      • 31. Farazkish, R.: ‘A new quantum-dot cellular automata fault-tolerant full-adder’, J. Comput. Electron, 2015, 14, (2), pp. 506514.
    32. 32)
      • 32. Huang, J., Momenzadeh, M., Lombardi, F.: ‘Defect tolerance of QCA tiles’. Proc. Conf. Design Automation Test, 2006, pp. 774776.
    33. 33)
      • 33. Kumar, D., Mitra, D., Bhattacharya, B.B.: ‘On fault-tolerant design of exclusive-OR gates in QCA’, J. Comput. Electron., 2017, 16, (3), pp. 896906.
    34. 34)
      • 34. Kumar, D., Mitra, D.: ‘Design of a practical fault-tolerant adder in QCA’, Microelectron. J., 2016, 53, pp. 90104.
    35. 35)
      • 35. Momenzadeh, M., Ottavi, M., Lombardi, F.: ‘Modeling QCA defects at molecular-level in combinational circuits’. Int. Symp. Defect and Fault tolerance VLSI Systems, 2005, pp. 208216.
    36. 36)
      • 36. Sen, B., Agarwal, A., Nath, R., et al: ‘Efficient design of fault tolerant tiles in QCA’. Annual IEEE India Conf. (Indicon), 2014, pp. 16.
    37. 37)
      • 37. Porod, W., Lent, C.S., Bernstein, G.H., et al: ‘Quantum-dot cellular automata: computing with coupled quantum dots’, Int. J. Electron., 1999, 86, (5), pp. 549590.
    38. 38)
      • 38. Lent, C.S., Taugaw, P.D.: ‘A device architecture for computing with quantum dots’, Proc. IEEE, 1997, 85, pp. 541557.
    39. 39)
      • 39. Timler, J., Lent, C.S.: ‘Power gain and dissipation in quantum-dot cellular automata’, J. Appl. Phys., 2002, 91, (2), pp. 823831.
    40. 40)
      • 40. Vankamamidi, V., Ottavi, M., Lombardi, F.: ‘Two-dimensional schemes for clocking/timing of QCA circuits’, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 2007, 27, (1), pp. 3444.
    41. 41)
      • 41. Srivastava, S., Sarkar, S., Bhanja, S.: ‘Estimation of upper bound of power dissipation in QCA circuits’, IEEE Trans. Nanotechnol., 2009, 8, pp. 116127.
    42. 42)
      • 42. Srivastava, S., Asthana, A., Bhanja, S., et al: ‘QCAPro – an error power estimation tool for QCA circuit design’. IEEE Int. Symp. Circuits Systems, 2011, pp. 23772380.
    43. 43)
      • 43. Singh, G., Sarin, R.K., Raj, B.: ‘Design and analysis of area efficient QCA based reversible logic gates’, Microprocess. Microsyst., 2017, 52, pp. 5968.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2017.0505
Loading

Related content

content/journals/10.1049/iet-cds.2017.0505
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address