http://iet.metastore.ingenta.com
1887

Manchester-encoded data transmission circuit integrated by metal–oxide TFTs suitable for 13.56 MHz radio-frequency identification tag application

Manchester-encoded data transmission circuit integrated by metal–oxide TFTs suitable for 13.56 MHz radio-frequency identification tag application

For access to this article, please select a purchase option:

Buy eFirst article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
— Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study proposes a Manchester-encoded data transmission circuit suitable for 13.56 MHz radio-frequency identification (ID) tags integrated by indium–zinc–oxide thin-film transistors (TFTs). All the modules in the circuit are only constructed by two types of logic units: NOT gate and NOR gate. The 16 bit ID data are stored in the read-only-memory circuits realised by a fixed TFTs array. The 16 bit ID data are encoded by Manchester module as the output of the Manchester-encoded data transmission circuit with a bit rate of 103 kbps. The chip area is 6.5 mm2 with the total number of gates as 76 and the sum of the transistors as 300. Moreover, the power consumption is 3.8 mW at VDD = 5 V.

References

    1. 1)
      • Y. Kurokawa , T. Ikeda , M. Endo .
        1. Kurokawa, Y., Ikeda, T., Endo, M., et al: ‘UHF RFCPUs on flexible and glass substrates for secure RFID systems’, IEEE J. Solid-State Circuit, 2008, 43, (1), pp. 292298.
        . IEEE J. Solid-State Circuit , 1 , 292 - 298
    2. 2)
      • R. Glidden , C. Bockorick , S. Cooper .
        2. Glidden, R., Bockorick, C., Cooper, S., et al: ‘Design of ultra-low-cost UHF RFID tags for supply chain applications’, IEEE Commun. Mag., 2004, 42, (8), pp. 140151.
        . IEEE Commun. Mag. , 8 , 140 - 151
    3. 3)
      • A. Nathan , G.R. Chaji , S.J. Ashtiani .
        3. Nathan, A., Chaji, G.R., Ashtiani, S.J.: ‘Driving schemes for a-Si and LTPS AMOLED displays’, J. Disp. Technol., 2005, 1, (2), pp. 267277.
        . J. Disp. Technol. , 2 , 267 - 277
    4. 4)
      • S. Uchikoga , N. Ibaraki .
        4. Uchikoga, S., Ibaraki, N.: ‘Low temperature poly-Si TFT-LCD by excimer laser anneal’, Thin Solid Films, 2001, 383, (1–2), pp. 1924.
        . Thin Solid Films , 19 - 24
    5. 5)
      • E. Cantatore , C.T. Geuns Thomas , H. Gelinck Gerwin , E. van Veenendaal .
        5. Cantatore, E., Geuns Thomas, C.T., Gelinck Gerwin, H., van Veenendaal, E., et alA 13.56 MHz RFID system based on organic transponders’, IEEE J. Solid-State Circuits, 2007, 42, (1), pp. 8492.
        . IEEE J. Solid-State Circuits , 1 , 84 - 92
    6. 6)
      • V. Fiore , E. Ragonese , S. Abdinia .
        6. Fiore, V., Ragonese, E., Abdinia, S., et al: ‘A 13.56 MHz RFID tag with active envelope detection in an organic complementary TFT technology’. Proc. IEEE 61st Int. Solid-State Circuits Conf., San Francisco, CA, USA, February 2014, pp. 913.
        . Proc. IEEE 61st Int. Solid-State Circuits Conf. , 9 - 13
    7. 7)
      • V. Fiore , P. Battiato , S. Abdinia .
        7. Fiore, V., Battiato, P., Abdinia, S., et al: ‘An integrated 13.56 MHz RFID tag in a printed organic complementary TFT technology on flexible substrate’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2015, 62, (6), pp. 16681677.
        . IEEE Trans. Circuits Syst. I, Regul. Pap. , 6 , 1668 - 1677
    8. 8)
      • J.K. Jeong .
        8. Jeong, J.K.: ‘The status and perspectives of metal oxide thin-film transistors for active matrix flexible displays’, Semicond. Sci. Technol., 2011, 26, (3), p. 034008.
        . Semicond. Sci. Technol. , 3 , 034008
    9. 9)
      • K. Nomura , H. Ohta , A. Takagi .
        9. Nomura, K., Ohta, H., Takagi, A., et al: ‘Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors’, Nature, 2004, 432, (7061), pp. 488492.
        . Nature , 7061 , 488 - 492
    10. 10)
      • T. Kawamura , H. Wakana , K. Fujii .
        10. Kawamura, T., Wakana, H., Fujii, K., et al: ‘Oxide TFT rectifier achieving 13.56 MHz wireless operation’, IEEE Trans. Electron Devices, 2012, 59, (11), pp. 30023008.
        . IEEE Trans. Electron Devices , 11 , 3002 - 3008
    11. 11)
      • S.H. Cho , S.W. Kim , W.S. Cheong .
        11. Cho, S.H., Kim, S.W., Cheong, W.S., et al: ‘Oxide thin film transistor circuits for transparent RFID applications’, IEICE Trans. Electron., 2010, 93-C, (10), pp. 15041510.
        . IEICE Trans. Electron. , 10 , 1504 - 1510
    12. 12)
      • L.F. Lan , Z. Peng , J.B. Peng .
        12. Lan, L.F., Peng, Z., Peng, J.B.: ‘Research progress on oxide-based thin film transistors’, Acta Phys. Sin., 2016, 65, (12), p. 2016.
        . Acta Phys. Sin. , 12 , 2016
    13. 13)
      • B.D. Yang , J.M. Oh , H.J. Kang .
        13. Yang, B.D., Oh, J.M., Kang, H.J., et al: ‘A transparent logic circuit for RFID tag in a-IGZO TFT technology’, ETRI J., 2013, 35, (4), pp. 610616.
        . ETRI J. , 4 , 610 - 616
    14. 14)
      • M. Nag , A. Bhoolokam , S. Smout .
        14. Nag, M., Bhoolokam, A., Smout, S., et alCircuits and AMOLED display with self-aligned a-IGZO TFTs on polyimide foil’, J. Soc. Inf. Disp., 2014, 22, (10), pp. 509517.
        . J. Soc. Inf. Disp. , 10 , 509 - 517
    15. 15)
      • X. Li , D. Geng , M. Mativenga .
        15. Li, X., Geng, D., Mativenga, M., et al: ‘High-speed dual-gate a-IGZO TFT-based circuits with top-gate offset structure’, IEEE Electron Device Lett., 2014, 35, (4), pp. 461463.
        . IEEE Electron Device Lett. , 4 , 461 - 463
    16. 16)
      • T.C. Huang , K.T. Cheng .
        16. Huang, T.C., Cheng, K.T.: ‘Design for low power and reliable flexible electronics: self-tunable cell-library design’, J. Disp. Technol., 2009, 5, (6), pp. 206215.
        . J. Disp. Technol. , 6 , 206 - 215
    17. 17)
      • H. Yin , S. Kim , C.J. Kim .
        17. Yin, H., Kim, S., Kim, C.J., et al: ‘Bootstrapped ring oscillator with propagation delay time below 1.0 ns/stage by standard 0.5 μm bottom-gate amorphous Ga2O3–In2O3–ZnO TFT technology’. IEEE Int. Electron Devices Meeting, San Francisco, CA, USA, 2008, pp. 14.
        . IEEE Int. Electron Devices Meeting , 1 - 4
    18. 18)
      • L.R. Zhang , C.Y. Huang , G.M. Li .
        18. Zhang, L.R., Huang, C.Y., Li, G.M., et al: ‘A Low-power high-stability flexible scan driver integrated by IZO TFTs’, IEEE Trans. Electron Devices, 2016, 63, (4), pp. 17791782.
        . IEEE Trans. Electron Devices , 4 , 1779 - 1782
    19. 19)
      • W.J. Wu , X.F. Song , L.R. Zhang .
        19. Wu, W.J., Song, X.F., Zhang, L.R., et al: ‘A highly stable beside gate driver integrated by IZO TFTs’, IEEE Transit. Electron Devices, 2014, 61, (9), pp. 33353338.
        . IEEE Transit. Electron Devices , 9 , 3335 - 3338
    20. 20)
      • S.J. Yoo , S.J. Hong , J.-S. Kang .
        20. Yoo, S.J., Hong, S.J., Kang, J.-S., et al: ‘A Low-power single-clock-driven scan driver using depletion-mode a-IGZO TFTs’, IEEE Electron Device Lett., 2012, 33, (3), pp. 402404.
        . IEEE Electron Device Lett. , 3 , 402 - 404
    21. 21)
      • P.G. Bahubalindruni , B. Silva , V.G. Tavares .
        21. Bahubalindruni, P.G., Silva, B., Tavares, V.G., et al: ‘Analog circuits with high-gain topologies using a-GIZO TFTs on glass’, J. Disp. Technol., 2015, 11, (6), pp. 547553.
        . J. Disp. Technol. , 6 , 547 - 553
    22. 22)
      • V. Ganesan , K.S. Shaji .
        22. Ganesan, V., Shaji, K.S.: ‘Design of positive & negative edge triggered D-flip flop using AlGaAs/GaAs MODFET technology’. 2014 Second Int. Conf. Devices, Circuits and Systems (ICDCS), Combiatore, India, March 2014.
        . 2014 Second Int. Conf. Devices, Circuits and Systems (ICDCS)
    23. 23)
      • Y.J. Chang , Y.H. Liao .
        23. Chang, Y.J., Liao, Y.H.: ‘Hybrid-type CAM design for both power and performance efficiency’, IEEE Trans. Very Large Scale Integr. Syst., 2008, 16, (8), pp. 965974.
        . IEEE Trans. Very Large Scale Integr. Syst. , 8 , 965 - 974
    24. 24)
      • K.R. Nary , S.I. Long .
        24. Nary, K.R., Long, S.I.: ‘GaAs two-phase dynamic FET logic: a low-power logic family for VLSI’, IEEE J. Solid-State Circuits, 1992, 27, (10), pp. 13641371.
        . IEEE J. Solid-State Circuits , 10 , 1364 - 1371
    25. 25)
      • D.H. Lee , J. Kim , H.J. Cho .
        25. Lee, D.H., Kim, J., Cho, H.J., et al: ‘Flexible and high noise margin organic enhancement inverter using hybrid insulator’, Thin Solid Films, 2017, 622, pp. 2933.
        . Thin Solid Films , 29 - 33
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2017.0499
Loading

Related content

content/journals/10.1049/iet-cds.2017.0499
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address