http://iet.metastore.ingenta.com
1887

General modular adder designs for residue number system applications

General modular adder designs for residue number system applications

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Modular adders are very crucial components in the performance of residue number system-based applications. Most of the work published so far has been restricted to modulo adders or modulo-specific adders. Less work has been dedicated to modulo-generic adders. This work presents new designs for modulo adders, where K is any integer in the range of . The proposed structure merges two binary adder structures and maximises sharing of components, wherever possible. This merger permits shorter cell-interconnections, which results in space wastage reduction. Additionally, tristate-based multiplexers (MUXs) are used in lieu of the more demanding gate-based MUXs. As examined over a very practical range of n, , and based on a 65 nm VLSI realisation, the circuit layouts of the proposed adders outperform considerably the most recent and competitive functionally identical published works. On average, the proposed designs have shown reductions in area, time, power, and energy of 23.7, 13.8, 22.9, and 33.6%, respectively.

References

    1. 1)
      • 1. Mohan, P.V.A.: ‘Residue number systems: theory and applications’ (Birkhauser, Basel, Switzerland, 2016).
    2. 2)
      • 2. Hiasat, A., Abdel-Aty-Zohdy, H.: ‘Design and implementation of a fast and compact residue-based semi-custom VLSI arithmetic chip’. Proc. 37th Midwest Symp. Circuits Systems, August 1994, pp. 428431.
    3. 3)
      • 3. Toivonen, T., Heikkil, J.: ‘Video filtering with fermat number theoretic transforms using residue number system’, IEEE Trans. Circuits Syst. Video Technology, 2006, 16, (1), pp. 92101.
    4. 4)
      • 4. Vun, C., Premkumar, A., Zhang, W.: ‘A new RNS based DA approach for inner product computation’, IEEE Trans. Circ. Syst. CAS-I, 2013, 60, (9), pp. 21392152.
    5. 5)
      • 5. Esmaeildoust, M., Schinianakis, D., Javashi, H., et al: ‘Efficient RNS implementation of elliptic curve point multiplication over GF(p)’, IEEE Trans. Very Large Scale Integr. Syst., 2013, 21, (8), pp. 15451549.
    6. 6)
      • 6. Zheng, X., Wang, B., Zhou, C., et al: ‘Parallel DNA arithmetic operation with one error detection based on 3-moduli set’, IEEE Trans. Nanosci., 2016, 15, (5), pp. 499507.
    7. 7)
      • 7. Hiasat, A.: ‘New designs for a sign detector and a residue to binary convertor’, IEE Proc. G Circ. Dev. Syst., 1993, 140, (4), pp. 247252.
    8. 8)
      • 8. Wang, W., Swamy, M., Ahmad, M., et al: ‘A study of the residue-to-binary converters for the three-moduli sets’, IEEE Trans. Circuits Syst. I, 2003, 50, (2), pp. 235243.
    9. 9)
      • 9. Hiasat, A.: ‘An efficient reverse converter for the three-moduli set (2n+1−1, 2n, 2n−1)’, IEEE Trans. CAS-II, 2017, 64, (8), pp. 962966.
    10. 10)
      • 10. Molahosseini, A., Navi, K., Dadkhah, C., et al: ‘Efficient reverse converter designs for the new 4-moduli sets (2n−1, 2n, 2n, +1, 22n+1 − 1) and (2n−1, 22n, 2n, +1, 22n +1) based on new CRTs’, IEEE Trans. Circuits Syst. I, 2010, 57, (4), pp. 823835.
    11. 11)
      • 11. Hiasat, A.: ‘A residue-to-binary converter for the extended four-moduli set {2n−1, 2n + 1, 22n + 1, 22n+p}’, IEEE Trans. Very Large Scale Integ. Syst., 2017, 25, (7), pp. 21882192.
    12. 12)
      • 12. Ahmadifar, H., Jaberipur, G.: ‘A new residue number system with 5-moduli set: (22q, 2q ± 3, 2q ± 1)’, Comp. J., 2015, 58, (7), pp. 15481565.
    13. 13)
      • 13. Pettenghi, H., Chaves, R., Sousa, L.: ‘RNS reverse converters for moduli sets with dynamic ranges up to (8n + 1)-bits’, IEEE Trans. Circuits Syst. I, 2013, 60, (6), pp. 14871500.
    14. 14)
      • 14. Hiasat, A.: ‘A reverse converter and sign detectors for an extended RNS five moduli se’, IEEE Trans. Circ. Syst. TCAS-I, 2017, 64, (1), pp. 111121.
    15. 15)
      • 15. Hiasat, A.: ‘A suggestion for a fast residue multiplier for a family of moduli of the form (2n−(2p ± 1))‘, Comp. J., 2004, 47, (1), pp. 93102.
    16. 16)
      • 16. Pettenghi, H., Cotofana, S., Sousa, L.: ‘Efficient method for designing modulo (2n ± k) multipliers’, J. Circ. Syst. Comp., 2014, 23, (1), pp. 120.
    17. 17)
      • 17. Zimmermann, R.: ‘Efficient VLSI implementation of modulo (2n ± 1) addition and multiplication’. Proc. 14th IEEE Symp. Computational Arithmetic, April 1999, pp. 158167.
    18. 18)
      • 18. Kalamboukas, L., Nikolos, D., Efstathiou, C., et al: ‘High-speed parallel-prefix modulo 2n 1 adders’, IEEE Trans. Comput., 2000, 49, (7), pp. 673680.
    19. 19)
      • 19. Vergos, H.T., Efstathiou, C., Nikolos, D.: ‘Diminished-one modulo 2n+ 1 adder design’, IEEE Trans. Comput., 2002, 51, (12), pp. 13891399.
    20. 20)
      • 20. Dimitrakopoulos, G., Nikolos, D.: ‘High-speed parallel-prefix VLSI ling adders’, IEEE Trans. Comput., 2005, 54, (2), pp. 225231.
    21. 21)
      • 21. Patel, R.A., Benaissa, M., Boussakta, S.: ‘Fast parallel-prefix architectures for modulo 2n 1 addition with a single representation of zero’, IEEE Trans. Comput., 2007, 56, (11), pp. 14841492.
    22. 22)
      • 22. Jaberipur, G., Parhami, B.: ‘Unified approach to the design of modulo- 2n ± 1 adders based on signed-LSB representation of residues’. Proc. 19th IEEE Symp. Computer Arithmetic, April 2009, pp. 5764.
    23. 23)
      • 23. Vergos, H.T., Dimitrakopoulos, G.: ‘On modulo 2n + 1 adder design’, IEEE Trans. Comput., 2012, 61, (2), pp. 173186.
    24. 24)
      • 24. Bayoumi, M., Jullien, G., Miller, W.: ‘A VLSI implementation of residue adders’, IEEE Trans. Circuits Syst., 1987, 34, (3), pp. 284288.
    25. 25)
      • 25. Dugdale, M.: ‘VLSI implementation of residue adders based on binary adders’, IEEE Trans. Circuits Syst. II Analog Digit. Signal Process., 1992, 39, (5), pp. 325329.
    26. 26)
      • 26. Piestrak, S.J.: ‘Design of residue generators and multioperand modular adders using carry-save adders’, IEEE Trans. Comput., 1994, 43, (1), pp. 6877.
    27. 27)
      • 27. Hiasat, A.: ‘High-speed and reduced-area modular adder structures for RNS’, IEEE Trans. Comput., 2002, 51, (1), pp. 8489.
    28. 28)
      • 28. Vergos, H., Efstathiou, C.: ‘On the design of efficient modular adders’, J. Circuits Syst. Comput., 2005, 14, (5), pp. 965972.
    29. 29)
      • 29. Patel, R., Benaissa, M., Boussakta, S.: ‘Novel power-delay-area-efficient approach to generic modular addition’, IEEE Trans. Comput., 2007, 56, (6), pp. 12791292.
    30. 30)
      • 30. Jaberipur, G., Parhami, B., Nejati, S.: ‘On building general modular adders from standard binary arithmetic components’. Proc. 45th Asilomar Conf. Signals Systems and Computers, 2011, pp. 69.
    31. 31)
      • 31. Matutino, P.M., Pettenghi, H., Chaves, R., et al: ‘RNS arithmetic units for modulo (2n ± k)’. Proc. Euromicro Conf. Digital System Design, September 2012, pp. 795802.
    32. 32)
      • 32. Low, J., Chang, C.-H.: ‘A new approach to the design of efficient residue generators for arbitrary moduli’, IEEE Trans. Circ. Syst. TCAS-I, 2013, 60, (9), pp. 23662374.
    33. 33)
      • 33. Patel, R., Benaissa, M., Boussakta, S.: ‘Fast modulo 2n−(2n−2 + 1) addition: a new class of adder for RNS’, IEEE Trans. Circ. Syst. I., 2007, 56, (6), pp. 12791292.
    34. 34)
      • 34. Matutino, P.M., Chaves, R., Sousa, L.: ‘Arithmetic units for RNS moduli (2n − 3) and (2n + 3) operations’. Proc. 13th Euromicro Conf. Digital System Design: Architecture, Methods and Tools (DSD), September 2010, pp. 243246.
    35. 35)
      • 35. Ma, S., Hu, J.-H., Wang, C.-H.: ‘A novel modulo adder for 2n−2k−1 residue number system’, IEEE Trans. Circ. Syst., 2013, 60, (11), pp. 29622972.
    36. 36)
      • 36. Ladner, E., Fischer, M.J.: ‘Parallel prefix computation’, J. ACM, 1980, 27, (4), pp. 831838.
    37. 37)
      • 37. Sklansky, J.: ‘Conditional sum addition logic’, IRE Trans. Electron. Comput., 1960, 9, (6), pp. 226231.
    38. 38)
      • 38. Kogge, P.M., Stone, H.S.: ‘A parallel algorithm for the efficient solution of a general class of recurrence equations’, IEEE Trans. Comput., 1973, 22, (8), pp. 786792.
    39. 39)
      • 39. Brent, R.P., Kung, H.T.: ‘A regular layout for parallel adders’, IEEE Trans. Comput., 1982, 31, (3), pp. 260264.
    40. 40)
      • 40. Tyagi, A.: ‘A reduced area scheme for carry-select adders’, IEEE Trans. Comp., 1993, 42, (10), pp. 11631170.
    41. 41)
      • 41. Alioto, M., Di Cataldo, G., Palumbo, G.: ‘Optimized design of high fan-in multiplexers using tri-state buffers’, IEEE Trans. Circ. Syst. I, 2002, 49, (10), pp. 15001505.
    42. 42)
      • 42. Burch, R., Najm, F., Yang, P., et al: ‘A monte carlo approach for power estimation’, IEEE Trans. Very Large Scale Integr. Syst., 1993, 1, (1), pp. 6371.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2017.0470
Loading

Related content

content/journals/10.1049/iet-cds.2017.0470
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address