Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Design and analysis of CMOS RCG transimpedance amplifier based on elliptic filter approach

This study presents a new design of compact transimpedance amplifier (TIA) for optical communication applications. By adopting the regulated common gate (RCG) topology, the proposed amplifier is designed and synthesised based on a third-order elliptic filter approach. Implemented in 0.13 μm complementary metal oxide semiconductor technology, the post layout simulation results provide 50 dB Ω of direct current gain, 15 GHz of bandwidth, as an input referred noise current performance. The proposed RCG TIA occupies a while consuming 5.34 mW under 1.2 V supply voltage, only.

References

    1. 1)
      • 13. Atef, M.: ‘Transimpedance amplifier with a compression stage for wide dynamic range optical applications’, Microelectron. J., 2015, 46, (7), pp. 593597.
    2. 2)
      • 7. Mohan, S.S., Hershenson, M.D.M., Boyd, S.P., et al: ‘Bandwidth extension in CMOS with optimized on-chip inductors’, IEEE J. Solid-State Circuits, 2000, 35, (3), pp. 346355.
    3. 3)
      • 2. Razavi, B.: ‘Design of integrated circuits for optical communications’, 2003.
    4. 4)
      • 14. Silva, M.d.M., Oliveira, L.B.: ‘Regulated common-gate transimpedance amplifier designed to operate with a silicon photo-multiplier at the input’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2014, 61, (3), pp. 725735.
    5. 5)
      • 22. Seifouri, M., Amiri, P., Rakide, M.: ‘Design of broadband transimpedance amplifier for optical communication systems’, Microelectron. J., 2015, 46, (8), pp. 679684.
    6. 6)
      • 1. Hermans, C., Steyaert, M.: ‘Broadband opto-electrical receivers in standard CMOS’, in ‘Analog circuits and signal processing series’ (Springer, Netherlands, 2007, 1st edn.).
    7. 7)
      • 17. Thede, L.D.: ‘Practical analog and digital filter design (Artech House microwave library)’ (Artech House, University of Michigan, 2005).
    8. 8)
      • 21. Schow, C.L., Schares, L., John, R.A., et al: ‘25 Gbit/s transimpedance amplifier in 0.13 μm CMOS’, Electron. Lett., 2006, 42, (21), pp. 12401241.
    9. 9)
      • 19. Parks, T.W., Burrus, C.S.: ‘Digital filter design’ (Wiley-Interscience, 1987).
    10. 10)
      • 10. Jin, J.D., Hsu, S.S.H.: ‘A 40-Gb/s transimpedance amplifier in 0.18 μm CMOS technology’, IEEE J. Solid-State Circuits, 2008, 43, (6), pp. 14491457.
    11. 11)
      • 6. Kromer, C., Sialm, G., Morf, T., et al: ‘A low-power 20 GHz 52 dB; transimpedance amplifier in 80 nm CMOS’, IEEE J. Solid-State Circuits, 2004, 39, (6), pp. 885894.
    12. 12)
      • 5. Analui, B., Hajimiri, A.: ‘Bandwidth enhancement for transimpedance amplifiers’, IEEE J. Solid-State Circuits, 2004, 39, (8), pp. 12631270.
    13. 13)
      • 20. Taghavi, M.H., Belostotski, L., Haslett, J.W., et al: ‘10 Gb/s 0.13 μm CMOS inductorless modified RGC transimpedance amplifier’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2015, 62, (8), pp. 19711980.
    14. 14)
      • 12. Bashiri, S., Plett, C., Aguirre, J., et al: ‘A 40 Gb/s transimpedance amplifier in 65 nm CMOS’. Proc. 2010 IEEE Int. Symp. on Circuits and Systems (ISCAS), Paris, France, 2010, pp. 757760.
    15. 15)
      • 8. Wu, C.H., Lee, C.H., Chen, W.S., et al: ‘CMOS wideband amplifiers using multiple inductive-series peaking technique’, IEEE J. Solid-State Circuits, 2005, 40, (2), pp. 548552.
    16. 16)
      • 15. Atef, M., Zimmermann, H.: ‘Low-power 10 Gb/s inductorless inverter based common-drain active feedback transimpedance amplifier in 40 nm CMOS’, Analog Integr. Circuits Signal Process., 2013, 76, (3), pp. 367376.
    17. 17)
      • 4. Zhou, H., Wang, W., Chen, C., et al: ‘A low-noise, large-dynamic-range-enhanced amplifier based on JFET buffering input and JFET bootstrap structure’, IEEE Sens. J., 2015, 15, pp. 21012105.
    18. 18)
      • 11. Park, S.M., Yoo, H.J.: ‘1.25 Gb/s regulated cascode CMOS transimpedance amplifier for gigabit ethernet applications’, IEEE J. Solid-State Circuits, 2004, 39, (1), pp. 112121.
    19. 19)
      • 3. Gray, M.B., Shaddock, D.A., Harb, C.C., et al: ‘Photodetector designs for low-noise, broadband, and high-power applications’, Rev. Sci. Instrum., 1998, 69, (11), pp. 37553762.
    20. 20)
      • 16. Lu, Z., Yeo, K.S., Ma, J., et al: ‘Broad-band design techniques for transimpedance amplifiers’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2007, 54, (3), pp. 590600.
    21. 21)
      • 18. Poularikas, A.: ‘Handbook of formulas and tables for signal processing’, in ‘Electrical engineering handbook’ (CRC Press, University of Alabama in Huntsville, 1998).
    22. 22)
      • 23. Abu-Taha, J., Yazgi, M.: ‘A 7 GHz compact trans-impedance amplifier TIA in CMOS 0.18 μm technology’, Analog Integr. Circuits Signal Process., 2016, 86, (3), pp. 429438.
    23. 23)
      • 9. Salhi, S., Escid, H., Slimane, A.: ‘Design of high speed transimpedance amplifier for optical communication systems’. 2017 Seminar on Detection Systems Architectures and Technologies (DAT), Algiers, Algeria, 2017, pp. 15.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2017.0449
Loading

Related content

content/journals/10.1049/iet-cds.2017.0449
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address