http://iet.metastore.ingenta.com
1887

Design and analysis of CMOS RCG transimpedance amplifier based on elliptic filter approach

Design and analysis of CMOS RCG transimpedance amplifier based on elliptic filter approach

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents a new design of compact transimpedance amplifier (TIA) for optical communication applications. By adopting the regulated common gate (RCG) topology, the proposed amplifier is designed and synthesised based on a third-order elliptic filter approach. Implemented in 0.13 μm complementary metal oxide semiconductor technology, the post layout simulation results provide 50 dB Ω of direct current gain, 15 GHz of bandwidth, as an input referred noise current performance. The proposed RCG TIA occupies a while consuming 5.34 mW under 1.2 V supply voltage, only.

References

    1. 1)
      • 1. Hermans, C., Steyaert, M.: ‘Broadband opto-electrical receivers in standard CMOS’, in ‘Analog circuits and signal processing series’ (Springer, Netherlands, 2007, 1st edn.).
    2. 2)
      • 2. Razavi, B.: ‘Design of integrated circuits for optical communications’, 2003.
    3. 3)
      • 3. Gray, M.B., Shaddock, D.A., Harb, C.C., et al: ‘Photodetector designs for low-noise, broadband, and high-power applications’, Rev. Sci. Instrum., 1998, 69, (11), pp. 37553762.
    4. 4)
      • 4. Zhou, H., Wang, W., Chen, C., et al: ‘A low-noise, large-dynamic-range-enhanced amplifier based on JFET buffering input and JFET bootstrap structure’, IEEE Sens. J., 2015, 15, pp. 21012105.
    5. 5)
      • 5. Analui, B., Hajimiri, A.: ‘Bandwidth enhancement for transimpedance amplifiers’, IEEE J. Solid-State Circuits, 2004, 39, (8), pp. 12631270.
    6. 6)
      • 6. Kromer, C., Sialm, G., Morf, T., et al: ‘A low-power 20 GHz 52 dB; transimpedance amplifier in 80 nm CMOS’, IEEE J. Solid-State Circuits, 2004, 39, (6), pp. 885894.
    7. 7)
      • 7. Mohan, S.S., Hershenson, M.D.M., Boyd, S.P., et al: ‘Bandwidth extension in CMOS with optimized on-chip inductors’, IEEE J. Solid-State Circuits, 2000, 35, (3), pp. 346355.
    8. 8)
      • 8. Wu, C.H., Lee, C.H., Chen, W.S., et al: ‘CMOS wideband amplifiers using multiple inductive-series peaking technique’, IEEE J. Solid-State Circuits, 2005, 40, (2), pp. 548552.
    9. 9)
      • 9. Salhi, S., Escid, H., Slimane, A.: ‘Design of high speed transimpedance amplifier for optical communication systems’. 2017 Seminar on Detection Systems Architectures and Technologies (DAT), Algiers, Algeria, 2017, pp. 15.
    10. 10)
      • 10. Jin, J.D., Hsu, S.S.H.: ‘A 40-Gb/s transimpedance amplifier in 0.18 μm CMOS technology’, IEEE J. Solid-State Circuits, 2008, 43, (6), pp. 14491457.
    11. 11)
      • 11. Park, S.M., Yoo, H.J.: ‘1.25 Gb/s regulated cascode CMOS transimpedance amplifier for gigabit ethernet applications’, IEEE J. Solid-State Circuits, 2004, 39, (1), pp. 112121.
    12. 12)
      • 12. Bashiri, S., Plett, C., Aguirre, J., et al: ‘A 40 Gb/s transimpedance amplifier in 65 nm CMOS’. Proc. 2010 IEEE Int. Symp. on Circuits and Systems (ISCAS), Paris, France, 2010, pp. 757760.
    13. 13)
      • 13. Atef, M.: ‘Transimpedance amplifier with a compression stage for wide dynamic range optical applications’, Microelectron. J., 2015, 46, (7), pp. 593597.
    14. 14)
      • 14. Silva, M.d.M., Oliveira, L.B.: ‘Regulated common-gate transimpedance amplifier designed to operate with a silicon photo-multiplier at the input’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2014, 61, (3), pp. 725735.
    15. 15)
      • 15. Atef, M., Zimmermann, H.: ‘Low-power 10 Gb/s inductorless inverter based common-drain active feedback transimpedance amplifier in 40 nm CMOS’, Analog Integr. Circuits Signal Process., 2013, 76, (3), pp. 367376.
    16. 16)
      • 16. Lu, Z., Yeo, K.S., Ma, J., et al: ‘Broad-band design techniques for transimpedance amplifiers’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2007, 54, (3), pp. 590600.
    17. 17)
      • 17. Thede, L.D.: ‘Practical analog and digital filter design (Artech House microwave library)’ (Artech House, University of Michigan, 2005).
    18. 18)
      • 18. Poularikas, A.: ‘Handbook of formulas and tables for signal processing’, in ‘Electrical engineering handbook’ (CRC Press, University of Alabama in Huntsville, 1998).
    19. 19)
      • 19. Parks, T.W., Burrus, C.S.: ‘Digital filter design’ (Wiley-Interscience, 1987).
    20. 20)
      • 20. Taghavi, M.H., Belostotski, L., Haslett, J.W., et al: ‘10 Gb/s 0.13 μm CMOS inductorless modified RGC transimpedance amplifier’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2015, 62, (8), pp. 19711980.
    21. 21)
      • 21. Schow, C.L., Schares, L., John, R.A., et al: ‘25 Gbit/s transimpedance amplifier in 0.13 μm CMOS’, Electron. Lett., 2006, 42, (21), pp. 12401241.
    22. 22)
      • 22. Seifouri, M., Amiri, P., Rakide, M.: ‘Design of broadband transimpedance amplifier for optical communication systems’, Microelectron. J., 2015, 46, (8), pp. 679684.
    23. 23)
      • 23. Abu-Taha, J., Yazgi, M.: ‘A 7 GHz compact trans-impedance amplifier TIA in CMOS 0.18 μm technology’, Analog Integr. Circuits Signal Process., 2016, 86, (3), pp. 429438.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2017.0449
Loading

Related content

content/journals/10.1049/iet-cds.2017.0449
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address