http://iet.metastore.ingenta.com
1887

access icon openaccess pth-order inverse of the Volterra series for multiple-input multiple-output non-linear dynamic systems

  • PDF
    1.6788043975830078MB
  • HTML
    556.7490234375Kb
  • XML
    492.275390625Kb
Loading full text...

Full text loading...

/deliver/fulltext/iet-cds/12/4/IET-CDS.2017.0447.html;jsessionid=19u2clkirf6ig.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-cds.2017.0447&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Schetzen, M.: ‘The Volterra and Wiener theories of nonlinear systems’ (Krieger Publishing Company, Malabar, FL, 2006).
    2. 2)
      • 2. Borys, A.: ‘Nonlinear aspects of telecommunication: discrete Volterra series and nonlinear echo cancellation’ (CRC Press LLC, Florida, 2001).
    3. 3)
      • 3. Cheng, C.M., Peng, Z.K., Zhang, W.M., et al: ‘Volterra-series-based nonlinear system modeling and its engineering applications: a state-of-the-art review’, Mech. Syst. Signal Process., 2017, 87, pp. 340364.
    4. 4)
      • 4. Ali, M.T., Wu, R., Mao, L., et al: ‘High frequency CMOS amplifier with improved linearity’, IET Circuits Dev. Syst.., 2014, 8, (6), pp. 450458.
    5. 5)
      • 5. Sandler, R.A., Deadwyler, S.A., Hampson, R.E., et al: ‘System identification of point-process neural systems using probability based Volterra kernels’, J. Neurosci. Methods, 2015, 240, pp. 179192.
    6. 6)
      • 6. Schetzen, M.: ‘Theory of pth-order inverses of nonlinear systems’, IEEE Trans. Circuits Syst., 1976, CAS-23, (5), pp. 285291.
    7. 7)
      • 7. Isaksson, M., Rönnow, D.: ‘A parameter-reduced Volterra model for dynamic RF power amplifier modeling based on orthonormal basis functions’, Int. J. RF Microw. Comput. Aided Eng., 2007, 17, (6), pp. 542551.
    8. 8)
      • 8. Beidas, B.F.: ‘Adaptive digital signal predistortion for nonlinear communication systems using successive methods’, IEEE Trans. Commun., 2016, 64, (5), pp. 21662175.
    9. 9)
      • 9. Berenguer, P.W., Nölle, M., Molle, L., et al: ‘Nonlinear digital pre-distortion of transmitter components’, J. Lightw. Technol., 2016, 34, (8), pp. 17391745.
    10. 10)
      • 10. Björsell, N., Isaksson, M., Händel, P., et al: ‘Kautz–volterra modelling of analogue-to-digital converters’, Comput. Standards Interf., 2010, 32, pp. 126129.
    11. 11)
      • 11. Tang, C., Zhang, L., Zhang, Y., et al: ‘Nonlinear revised error aided feedback equalization in high-speed satellite communication’, Telecommun. Syst., 2017, 66, (2), pp. 243251, doi: 10.1007/s11235-017-0282-7.
    12. 12)
      • 12. Lashkari, K.: ‘A novel Volterra-Wiener model for equalization of loudspeaker distortions’. Proc. Int. Conf. Acoustics Speech and Signal Processing Proc., Toulouse, France, May 2006, vol. 5, pp. 117120.
    13. 13)
      • 13. Eun, C., Powers, E.J.: ‘A new Volterra predistorter based on the indirect learning architecture’, IEEE Trans. Signal Process., 1997, 45, (1), pp. 223227.
    14. 14)
      • 14. Li, L.M., Billings, S.A.: ‘Generalized frequency response functions and output response synthesis for MIMO non-linear systems’, Int. J. Control, 2006, 79, (1), pp. 5362.
    15. 15)
      • 15. Swain, A.K., Billings, S.A.: ‘Generalized frequency response function matrix for MIMO non-linear systems’, Int. J. Control, 2001, 74, (8), pp. 829844.
    16. 16)
      • 16. Fang, Y., Jiao, L., Pan, J.: ‘MIMO Volterra filter equalization using pth-order inverse approach’. Int. Conf. Acoustics Speech and Signal Processing Proc., Istanbul, Turkey, June 2000, pp. 177180.
    17. 17)
      • 17. Ghannouchi, F., Younes, M., Rawat, R.: ‘Distortion and impairments mitigation and compensation of single- and multi-band wireless transmitters (invited)’, IET Microw. Antennas Propag., 2013, 7, (7), pp. 518534.
    18. 18)
      • 18. Beidas, B.F.: ‘Intermodulation distortion in multicarrier satellite systems: analysis and turbo volterra equalization’, IEEE Trans. Commun., 2011, 59, (6), pp. 15801590.
    19. 19)
      • 19. Zenteno, E., Piazza, R., Bhavani Shankar, M.R., et al: ‘Multiple-input multiple-output symbol rate signal digital predistorter for non-linear multi-carrier satellite channels’, IET Commun., 2015, 9, (16), pp. 20532059.
    20. 20)
      • 20. Amin, S., Landin, P., Händel, P., et al: ‘Behavioral modelling and linearization of crosstalk and memory effects in radio frequency MIMO transmitters’, IEEE Trans. Microw. Theory Tech., 2014, 62, (4), pp. 810823.
    21. 21)
      • 21. Suryasarman, P.M., Springer, A.: ‘A comparative analysis of adaptive digital predistortion algorithms for multiple antenna transmitters’, IEEE Circuits Syst. Regul. Pap., 2015, 62, (5), pp. 14121420.
    22. 22)
      • 22. Tsimbinos, J., Lever, K.V.: ‘Computational complexity of Volterra based nonlinear compensators’, Electron. Lett., 1996, 32, (9), pp. 852854.
    23. 23)
      • 23. Glad, T., Ljung, L.: ‘Control theory: multivariable and nonlinear methods’ (Taylor and Francis, London, UK, 2000).
    24. 24)
      • 24. Amin, S., Händel, P., Rönnow, D.: ‘Digital predistortion of single and concurrent dual band radio frequency GaN amplifiers with strong nonlinear memory effects’, IEEE Trans. Microw. Theory Technol., 2017, 65, (7), pp. 24532464.
    25. 25)
      • 25. Amin, S., Van Moer, W., Händel, P., et al: ‘Characterization of concurrent dual-band power amplifiers using a dual two-tone excitation signal’, IEEE Trans. Instrum. Meas., 2015, 64, (10), pp. 27812791.
    26. 26)
      • 26. Bassam, S.A., Helaoui, M., Ghannouchi, F.M.: ‘2D digital predistortion (2D-DPD) architecture for concurrent dual-band transmitters’, IEEE Trans. Microw. Theory Technol., 2011, 59, (10), pp. 25472553.
    27. 27)
      • 27. Alizadeh, M., Amin, S., Rönnow, D.: ‘Measurement and analysis of frequency-domain Volterra kernels of nonlinear dynamic 3 × 3 MIMO, IEEE Trans. Instrum. Meas., 2017, 66, (7), pp. 18931905.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2017.0447
Loading

Related content

content/journals/10.1049/iet-cds.2017.0447
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address