http://iet.metastore.ingenta.com
1887

High-order realisation of MOSFET-only band-pass filters for RF applications

High-order realisation of MOSFET-only band-pass filters for RF applications

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The authors present two new metal oxide semiconductor field effect transistor (MOSFET)-only second-order voltage and transadmittance-mode band-pass filters (BPFs) employing only five transistors without using any passive elements such as a resistor, a capacitor, and an inductor. As a result, both proposed circuits possess low-power consumption and occupy small chip area. The first proposed filter enjoys low output impedance and offset cancellation for voltage-mode operation while the second proposed filter has low supply voltage. The centre frequency of both proposed filters can be electronically tuned by varying biasing voltage. To demonstrate the performance of the proposed filters, effects of output transconductance of transistors have been investigated and equations of input referred noise have been obtained. Furthermore, fourth-order voltage and transadmittance-mode BPF which is derived the first proposed filter is presented and its simulation results are given. All proposed filters are laid-out in the Cadence environment using Taiwan semiconductor manufacturing company (TSMC) 0.18 µm complementary metal oxide semiconductor (CMOS) technology parameters. The required chip area of the fourth-order voltage and transadmittance-mode band-pass filter is 1100 μm2 and the power consumption is about 436 µW.

References

    1. 1)
      • 1. Deliyannis, T., Sun, Y., Fidler, J.K.: ‘Continuous-time active filter design’ (CRC Press, 1999).
    2. 2)
      • 2. Borre, K., Akos, D.M., Bertelsen, N., et al: ‘A software-defined GPS and Galileo receiver: a single-frequency approach’ (Birkhäuser, Boston, 2007).
    3. 3)
      • 3. Acar, C., Ozoguz, S.: ‘High-order voltage transfer function synthesis using CCII+ based unity gain current amplifiers’, Electron. Lett., 1996, 32, (22), pp. 20302031.
    4. 4)
      • 4. Yuce, E., Minaei, S.: ‘On the realization of high-order current-mode filter employing current controlled conveyors’, Comput. Electr. Eng., 2008, 34, (3), pp. 165172.
    5. 5)
      • 5. Ranjan, A., Ghosh, M., Paul, S.K.: ‘Third-order voltage-mode active-C band pass filter’, Int. J. Electron., 2015, 102, (5), pp. 781791.
    6. 6)
      • 6. Tsukutani, T., Higashimura, M., Ishida, M., et al: ‘A general class of current-mode high-order OTA-C filters’, Int. J. Electron., 1996, 81, (6), pp. 663670.
    7. 7)
      • 7. Yuce, E., Minaei, S.: ‘ICCII-based universal current-mode analog filter employing only grounded passive components’, Analog Integr. Circuits Signal Process., 2009, 58, (2), pp. 161169.
    8. 8)
      • 8. Lee, C.N., Chang, C.M.: ‘High-order mixed-mode OTA-C universal filter’, Int. J. Electron. Commun., 2009, 63, (6), pp. 517521.
    9. 9)
      • 9. Sagbas, M.: ‘Component reduced floating ±L, ±C and ±R simulators with grounded passive components’, Int. J. Electron. Commun., 2011, 65, (10), pp. 794798.
    10. 10)
      • 10. Zhao, J., Jiang, J.-G., Liu, J.-N.: ‘Design of tunable biquadratic filters employing CCCIIs: state variable block diagram approach’, Analog Integr. Circuits Signal Process., 2010, 62, (3), pp. 397406.
    11. 11)
      • 11. Fani, R., Farshidi, E.: ‘New systematic two-graph-based approach of active filters employing multiple output current controlled conveyors’, IET Circuits Dev. Syst., 2013, 7, (6), pp. 326336.
    12. 12)
      • 12. Prommee, P., Tiamsuphat, A., Abuelma'atti, M.T.: ‘Electronically tunable MOS-only current-mode high-order band-pass filters’, Turk. J. Electr. Eng. Comput. Sci., 2017, 25, (2), pp. 11161136.
    13. 13)
      • 13. Maundy, B.J., Elwakil, A.S., Ozoguz, S., et al: ‘Minimal two-transistor multifunction filter design’, Int. J. Circuit Theory Appl., 2017, 45, (11), pp. 14491466.
    14. 14)
      • 14. Arslan, E., Metin, B., Kuntman, H., et al: ‘MOS-only second order current-mode LP/BP filter’, Analog Integr. Circuits Signal Process., 2013, 74, (1), pp. 105109.
    15. 15)
      • 15. Arslan, E., Metin, B., Cicekoglu, O.: ‘MOSFET-only multi-function biquad filter’, Int. J. Electron. Commun., 2015, 69, (12), pp. 17371740.
    16. 16)
      • 16. Safari, L., Minaei, S., Metin, B.: ‘A low power current controllable single-input three-output current-mode filter using MOS transistors only’, Int. J. Electron. Commun., 2014, 68, (12), pp. 12051213.
    17. 17)
      • 17. Yesil, A., Ozenli, D., Arslan, E., et al: ‘Current mode single-input multi-output MOSFET-only filter’, Int. J. Electron. Commun., 2017, 80, pp. 157164.
    18. 18)
      • 18. Yesil, A., Ozenli, D., Arslan, E., et al: ‘Electronically tunable MOSFET-only current-mode biquad filter’, Int. J. Electron. Commun., 2017, 81, pp. 227235.
    19. 19)
      • 19. Ozenli, T., Alaybeyoglu, E., Kuntman, H., et al: ‘MOSFET-Only filter design automation based on polynomial regression with exemplary circuits’, Int. J. Electron. Commun., 2018, 84, pp. 342354.
    20. 20)
      • 20. Toker, A., Cicekoglu, O., Ozcan, S., et al: ‘High-output-impedance transadmittance type continuous-time multifunction filter with minimum active elements’, Int. J. Electron., 2001, 88, (10), pp. 10851091.
    21. 21)
      • 21. Yesil, A., Kacar, F.: ‘Electronically tunable resistorless mixed mode biquad filters’, Radioengineering, 2013, 22, (4), pp. 10161025.
    22. 22)
      • 22. Shah, N.A., Iqbal, S.Z., Parveen, B.: ‘Lowpass and bandpass transadmittance filter using operational amplifier pole’, Int. J. Electron. Commun., 2005, 59, (7), pp. 410412.
    23. 23)
      • 23. Shah, N.A., Quadri, M., Iqbal, S.Z.: ‘CDTA based universal transadmittance filter’, Analog Integr. Circuits Signal Process., 2007, 52, (1–2), pp. 6569.
    24. 24)
      • 24. Razavi, B.: ‘Design of analog CMOS integrated circuits’ (McGraw Hill Education, 2017, 2nd edn.).
    25. 25)
      • 25. Han, K., Gil, J., Song, S.-S., et al: ‘Complete high-frequency thermal noise modeling of short-channel MOSFETs and design of 5.2-GHz low noise amplifier’, IEEE J. Solid-State Circuits, 2005, 40, (3), pp. 726735.
    26. 26)
      • 26. Yesil, A., Kacar, F., Minaei, S.: ‘New differential difference stage and its application to band-pass filter at 10.7 MHz with high quality factor’, Int. J. Electron. Commun., 2017, 79, pp. 7482.
    27. 27)
      • 27. Arslan, E., Morgul, A.: ‘Self-biasing current conveyor for high frequency applications’, J. Circuits, Syst. Comput., 2012, 21, (5), p. 1250039.
    28. 28)
      • 28. Yesil, A., Ozenli, D., Arslan, E., et al: ‘Noise minimization in CMOS current mode circuits that employ differential input stage’, Adv. Electr. Comput. Eng., 2016, 16, (2), pp. 1924.
    29. 29)
      • 29. Bruun, E.: ‘Noise properties of CMOS current conveyors’. 1996 IEEE Int. Symp. Circuits and Systems. Circuits and Systems Connecting the World. ISCAS 96, 1996, pp. 144147.
    30. 30)
      • 30. Yuce, E., Minaei, S., Herencsár, N., et al: ‘Realization of first-order current-mode filters with low number of MOS transistors’, J. Circuits Syst. Comput., 2013, 22, (1), p. 1250071.
    31. 31)
      • 31. Ferri, G., Guerrini, N.C.: ‘Noise determination in differential pair-based second generation current conveyors’, Analog Integr. Circuits Signal Process., 2004, 41, (1), pp. 3546.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2017.0442
Loading

Related content

content/journals/10.1049/iet-cds.2017.0442
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address