Spintronic memristor synapse and its RWC learning algorithm

Spintronic memristor synapse and its RWC learning algorithm

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

As one of the most widely used memristor models, the spintronic memristor has become a promising candidate for the electronic synapse. Non-volatility, nanoscale geometries, binary data and multi-level information storage make the circuit simpler and consume less electricity. In this study, a new spintronic memristor synaptic circuit is proposed which can realise positive, zero and negative weights successfully. Furthermore, the circuits of the presented synaptic-based neuron and compact neural network are designed and an improved random weight change (RWC) algorithm is proposed. Compared with the traditional RWC algorithm, it has faster training speed and less training error. In addition, the neural network is applied to data prediction, the result of which is closer to real data. Finally, the correctness and effectiveness of the proposed network are verified via a series of computer simulations.


    1. 1)
      • 1. Chua, L.: ‘Memristor-the missing circuit element’, IEEE Trans. Circuit Theory, 1971, 18, (5), pp. 507519.
    2. 2)
      • 2. Strukov, D.B., Snider, G.S., Stewart, D.R., et al: ‘The missing memristor found’, Nature, 2008, 453, (7191), pp. 8083.
    3. 3)
      • 3. Wang, X., Chen, Y., Xi, H., et al: ‘Spintronic memristor through spin-torque-induced magnetization motion’, IEEE Electron Device Lett.., 2009, 30, (3), pp. 294297.
    4. 4)
      • 4. Hu, M., Li, H., Chen, Y., et al: ‘Geometry variations analysis of TiO2 thin-film and spintronic memristors’. Proc. Int. Conf. on Design Automation, Chiba, Japan, January 2011, pp. 2530.
    5. 5)
      • 5. Li, T., Duan, S., Liu, J., et al: ‘A spintronic memristor-based neural network with radial basis function for robotic manipulator control implementation’, IEEE Trans. Syst. Man Cybern. Syst., 2016, 46, (4), pp. 582588.
    6. 6)
      • 6. Duan, S., Wang, H., Wang, L., et al: ‘Impulsive effects and stability analysis on memristive neural networks with variable delays’, IEEE Trans. Neural Netw. Learn Syst., 2017, 28, (2), pp. 476481.
    7. 7)
      • 7. Mazumder, P., Kang, S.M., Waser, R.: ‘Memristors: devices, models, and applications’, Proc. IEEE, 2012, 100, (6), pp. 19111919.
    8. 8)
      • 8. Volos, C.K., Kyprianidis, I.M., Stouboulos, I.N.: ‘The memristor as an electric synapse-synchronization phenomena’. 2011 17th Int. Conf. on Digital Signal Processing (DSP), Corfu, Greece, July 2011, pp. 16.
    9. 9)
      • 9. Wang, X., Chen, Y.: ‘Spintronic memristor devices and application’. Proc. Int. Conf. on Design and Automation Association, Europe, March 2010, pp. 667672.
    10. 10)
      • 10. Ascoli, A., Corinto, F., Gilli, M., et al: ‘Memristor for neuromorphic applications: models and circuit implementations’, in Tetzlaff, R. (ED.): ‘Memristors and memristive systems’ (Springer, New York, 2014), pp. 379403.
    11. 11)
      • 11. Wang, H., Duan, S., Huang, T., et al: ‘Exponential stability of complex-valued memristive recurrent neural networks’, IEEE Trans. Neural Netw. Learn. Syst., 2017, 28, (3), pp. 766771.
    12. 12)
      • 12. Kim, H., Sah, M.P., Yang, C., et al: ‘Memristor bridge synapses’, Proc. IEEE, 2012, 100, (6), pp. 20612070.
    13. 13)
      • 13. Kim, H., Sah, M.P., Yang, C., et al: ‘Neural synaptic weighting with a pulse-based memristor circuit’, IEEE Trans. Circuits Syst., 2012, 59, (1), pp. 148158.
    14. 14)
      • 14. Adhikari, S.P., Yang, C., Kim, H., et al: ‘Memristor bridge synapse-based neural network and its learning’, IEEE Trans. Neural Netw. Learn Syst., 2012, 23, (9), pp. 14261435.
    15. 15)
      • 15. Wang, L., Wang, X., Duan, S., et al: ‘A spintronic memristor bridge synapse circuit and the application in memrisitive cellular automata’, Neurocomputing, 2015, 167, pp. 346351.
    16. 16)
      • 16. Luo, L., Hu, X., Duan, S., et al: ‘Multiple memristor series–parallel connections with use in synaptic circuit design’, IET Circuits Devices Syst., 2016, 11, (2), pp. 123134, doi:10.1049/iet-cds.2015.0357.
    17. 17)
      • 17. Sah, M.P., Yang, C., Kim, H., et al: ‘Memristor bridge circuit for neural synaptic weighting’. 2012 13th Int. Workshop on Cellular Nanoscale Networks and their Applications, Turin, Italy, August 2012, pp. 2931.
    18. 18)
      • 18. Duan, S., Hu, X., Dong, Z., et al: ‘Memristor-based cellular nonlinear/neural network: design, analysis, and applications’, IEEE Trans. Neural Netw. Learn. Syst., 2015, 26, (6), pp. 12021213.
    19. 19)
      • 19. Thomas, A.: ‘Memristor-based neural networks’, J. Phys. D, Appl. Phys., 2013, 46, (9), p. 093001.
    20. 20)
      • 20. Tetzlaff, R., Schmidt, T.: ‘Memristors and memristive circuits-an overview’. 2012 IEEE Int. Symp. on Circuits and Systems, Seoul, South Korea, May 2012, pp. 15901595.
    21. 21)
      • 21. Querlioz, D., Bichler, O., Gamrat, C.: ‘Simulation of a memristor-based spiking neural network immune to device variations’. The 2011 Int. Joint Conf. on Neural Networks, San Jose, USA, August 2011, pp. 17751781.
    22. 22)
      • 22. Adhikari, S.P., Kim, H., Budhathoki, R.K., et al: ‘A circuit-based learning architecture for multilayer neural networks with memristor bridge synapses’, IEEE Trans. Circuits Syst., 2015, 62, (1), pp. 215223.
    23. 23)
      • 23. Hirotsu, K., Brooke, M.A.: ‘An analog neural network chip with random weight change learning algorithm’. Proc. of 1993 Int. Conf. on Neural Networks, Nagoya, Japan, October 1993, pp. 30313034.
    24. 24)
      • 24. Yang, C., Kim, H., Adhikari, S.P., et al: ‘A circuit-based neural network with hybrid learning of backpropagation and random weight change algorithms’, Sensors, 2016, 17, (1), pp. 118, doi:10.3390/s17010016.
    25. 25)
      • 25. Liu, J., Brooke, M.A.: ‘Fully parallel on-chip learning hardware neural network for real-time control’. ISCAS'99. Prof. of the 1999 IEEE Int. Symp. on Circuits and Systems VLSI (Cat. No. 99CH36349), Orlando, USA, May 1999, vol. 5, pp. 371374.
    26. 26)
      • 26. Hameed, A.A., Karlik, B., Salman, M.S.: ‘Back-propagation algorithm with variable adaptive momentum’, Knowl.-Based Syst., 2016, 114, pp. 7987.
    27. 27)
      • 27. Burton, B., Kamran, F., Harley, R.G., et al: ‘Identification and control of induction motor stator currents using fast on-line random training of a neural network’, IEEE Trans. Ind. Appl., 1997, 33, (3), pp. 697704.
    28. 28)
      • 28. Liu, J., Brooke, M., Hirotsu, K.: ‘A CMOS feedforward neural-network chip with on-chip parallel learning for oscillation cancellation’, IEEE Trans. Neural Netw., 2002, 13, (5), pp. 11781186.
    29. 29)
      • 29. Cantley, K.D., Subramaniam, A., Stiegler, H., et al: ‘Hebbian learning in spiking neural networks with nano-crystalline silicon TFTs and memristive synapses’, IEEE Trans. Nano-technol., 2011, 10, (5), pp. 10661073.

Related content

This is a required field
Please enter a valid email address