http://iet.metastore.ingenta.com
1887

Bit-parallel systolic multiplier over for irreducible trinomials with ASIC and FPGA implementations

Bit-parallel systolic multiplier over for irreducible trinomials with ASIC and FPGA implementations

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Cryptography in digital world must offer integrity and confidentiality using cryptographic algorithms which mainly involve multiplication operation in finite fields. Various algorithms and architectures are proposed in the literature to obtain efficient finite field multiplications in both hardware and software. Here, a modified interleaved multiplication algorithm with reduced computational complexity is proposed based on a novel pre-computation (PC) technique to perform multiplication over for trinomials. Consequently, an m-bit systolic multiplier for trinomials (SMT) is designed by employing the proposed algorithm. Hardware and delay complexity analysis is performed and comparison of the proposed SMT structure with similar multipliers available in the literature is presented. The SMT structure achieves ∼28 and 17% improvement in hardware and area-delay product, respectively, for m = 233 when compared with the best multiplier available in the literature. The functionality of the proposed SMT structure is also verified by implementing on field-programmable gate array (FPGA) and application-specific integrated circuit (ASIC) technologies. It can be observed from FPGA and ASIC implementation results that the proposed SMT structure shows improvement in area, power consumption, area-delay, and power-delay products when compared with similar multipliers available in the literature.

References

    1. 1)
      • B. Schneier . (1996)
        1. Schneier, B.: ‘Foundations’, in Cooper, K. (Ed.): ‘Applied cryptography’ (John Wiley & Sons Inc., London, UK, 1996, 2nd edn.), pp. 118.
        .
    2. 2)
      • 2. FIPS PUB 46-3: ‘Data encryption standard (DES)’, 1977.
        .
    3. 3)
      • 3. FIPS PUB 197: ‘Advanced encryption standard (AES)’, 2001.
        .
    4. 4)
      • N. Koblitz .
        4. Koblitz, N.: ‘Elliptic curve cryptosystems’, Math. Comput., 1987, 48, (177), pp. 203209.
        . Math. Comput. , 177 , 203 - 209
    5. 5)
      • V.S. Miller . (1986)
        5. Miller, V.S.: ‘Use of elliptic curves in cryptography’, in Williams, H.C. (Ed.): ‘Lecture Notes in Computer Science’, 218, (Springer-Verlag, Berlin Heidelberg, Germany, 1986), pp. 417426.
        .
    6. 6)
      • R.L. Rivest , A. Shamir , L. Adleman .
        6. Rivest, R.L., Shamir, A., Adleman, L.: ‘A method for obtaining digital signatures and public-key cryptosystems’, Commun. ACM, 1978, 21, (2), pp. 120126.
        . Commun. ACM , 2 , 120 - 126
    7. 7)
      • T.C. Chen , S.W. Wei , H.J. Tsai .
        7. Chen, T.C., Wei, S.W., Tsai, H.J.: ‘Arithmetic unit for finite field GF(2m)’, IEEE Trans. Circuits Syst. I, 2008, 55, (3), pp. 828837.
        . IEEE Trans. Circuits Syst. I , 3 , 828 - 837
    8. 8)
      • S. Roman . (2006)
        8. Roman, S.: ‘Field theory’ (Springer-Verlag, New York, USA, 2nd edn., 2006).
        .
    9. 9)
      • G. Seroussi .
        9. Seroussi, G.: ‘Table of low-weight binary irreducible polynomials’. Technical Report Hewlett-Packard Laboratories-98-135, August 1998.
        .
    10. 10)
      • C.Y. Lee .
        10. Lee, C.Y.: ‘Low-latency bit-parallel systolic multiplier for irreducible xm+xn+1 with gcd(m,n)=1’, IEICE Trans. Fundam., 2008, 55, (3), pp. 828837.
        . IEICE Trans. Fundam. , 3 , 828 - 837
    11. 11)
      • C.Y. Lee .
        11. Lee, C.Y.: ‘Low complexity bit-parallel systolic multiplier over GF (2m) using irreducible trinomials’, IEE Proc. Comput. Digit. Tech., 2003, 150, (1), pp. 3942.
        . IEE Proc. Comput. Digit. Tech. , 1 , 39 - 42
    12. 12)
      • C.Y. Lee , C.C. Chen , E.H. Lu .
        12. Lee, C.Y., Chen, C.C., Lu, E.H.: ‘Compact bit-parallel systolic montgomery multiplication over GF (2m) generated by trinomials’. Proc. TENCON 2006, Hong Kong, China, November 2006, pp. 14.
        . Proc. TENCON 2006 , 1 - 4
    13. 13)
      • C.Y. Lee , J.S. Horng , I.C. Jou .
        13. Lee, C.Y., Horng, J.S., Jou, I.C., et al: ‘Low-complexity bit-parallel systolic montgomery multipliers for special classes of GF (2m)’, IEEE Trans. Comput., 2005, 54, (9), pp. 10611070.
        . IEEE Trans. Comput. , 9 , 1061 - 1070
    14. 14)
      • C.Y. Lee , Y.H. Chen , C.W. Chiou .
        14. Lee, C.Y., Chen, Y.H., Chiou, C.W., et al: ‘Unified parallel systolic multiplier over GF(2m)’, J. Comput. Sci. Tech., 2007, 22, (1), pp. 2838.
        . J. Comput. Sci. Tech. , 1 , 28 - 38
    15. 15)
      • C.Y. Lee , C.W. Chiou , J.M. Lin .
        15. Lee, C.Y., Chiou, C.W., Lin, J.M., et al: ‘Scalable and systolic montgomery multiplier over GF(2m) generated by trinomials’, IET Circuits Devices Syst., 2007, 1, (6), pp. 477484.
        . IET Circuits Devices Syst. , 6 , 477 - 484
    16. 16)
      • P.K. Meher .
        16. Meher, P.K.: ‘Systolic and super-systolic multipliers for finite field GF(2m) based on irreducible trinomials’, IEEE Trans. Circuits Syst. I, 2008, 55, (4), pp. 10311040.
        . IEEE Trans. Circuits Syst. I , 4 , 1031 - 1040
    17. 17)
      • C.Y. Lee .
        17. Lee, C.Y.: ‘Low-complexity parallel systolic montgomery multipliers over GF(2m) using Toeplitz matrix-vector representation’, IEICE Trans. Fundam., 2008, 91, (6), pp. 14701477.
        . IEICE Trans. Fundam. , 6 , 1470 - 1477
    18. 18)
      • C.W. Chiou , J.M. Lin , C.Y. Lee .
        18. Chiou, C.W., Lin, J.M., Lee, C.Y., et al: ‘Novel Mastrovito multiplier over GF(2m) using trinomial’. Proc. Int. Conf. Genetic and Evolutionary Computing, Kitakyushu, Japan, September 2011, pp. 237242.
        . Proc. Int. Conf. Genetic and Evolutionary Computing , 237 - 242
    19. 19)
      • S. Bayat-Sarmadi , M. Farmani .
        19. Bayat-Sarmadi, S., Farmani, M.: ‘High-throughput low-complexity systolic montgomery multiplication over GF(2m) based on trinomials’, IEEE Trans. Circuits Syst. II, 2015, 62, (4), pp. 377381.
        . IEEE Trans. Circuits Syst. II , 4 , 377 - 381
    20. 20)
      • S.S. Erdem , T. Yanik , C.K. Koc .
        20. Erdem, S.S., Yanik, T., Koc, C.K.: ‘Polynomial basis multiplication over GF(2m)’, Acta Appl. Math., 2006, 93, (1), pp. 3355.
        . Acta Appl. Math. , 1 , 33 - 55
    21. 21)
      • F. Rodriguez-Henriquez , A.D. Perez , N.A. Saqib . (2006)
        21. Rodriguez-Henriquez, F., Perez, A.D., Saqib, N.A., et al: ‘Binary finite field arithmetic’, in Ward, J. (Ed.): ‘Cryptographic algorithms on reconfigurable hardware’ (Springer-Verlag, Boston, MA, USA, 2006), pp. 139188.
        .
    22. 22)
      • K.K. Parhi . (2007)
        22. Parhi, K.K.: ‘VLSI digital signal processing systems: design and implementation’ (John Wiley & Sons, London, UK, 2007).
        .
    23. 23)
      • 23. ‘Recommended elliptic curves for federal government use’. Available at http://delta.cs.cinvestav.mx/ francisco/cripto/NISTReCur.pdf, accessed 3 October 2017.
        .
    24. 24)
      • 24. ‘Electronic Components Datasheet’. Available at http://www.alldatasheet.com/, accessed 3 October 2017.
        .
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2017.0426
Loading

Related content

content/journals/10.1049/iet-cds.2017.0426
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address