http://iet.metastore.ingenta.com
1887

Design procedure for multifinger MOSFET two-stage OTA with shallow trench isolation effect

Design procedure for multifinger MOSFET two-stage OTA with shallow trench isolation effect

For access to this article, please select a purchase option:

Buy eFirst article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Nanoscale complementary metal–oxide–semiconductor (CMOS) circuit design extensively employs multifinger layout technique to alleviate the performance degrading parasitic and mismatch effects that are typically observed with single-finger layout. However, a continuous increase in the number of fingers accompanied by a simultaneous decrease in their finger width could lead to the penalty of a higher degree of variation in the MOSFET's small-signal parameters. It is due to the heightened shallow trench isolation (STI) stress that gets developed in such devices. The optimisation of circuit performance with the arbitrarily fixed number and width of fingers would be ambiguous. In this work, an analysis of current–voltage (IV) characteristics of a MOSFET as a function of number of fingers has been proposed. It was found that both the drain current and gate transconductance get affected by the number of fingers. The authors proposed a Miller-compensated two-stage [operational transconductance amplifier (OTA)] and common source amplifier by considering STI effect. It is also found that the parameters of the proposed design matched well with the set of desired specifications. Also, the area of multifinger MOSFET OTA is lowered by up to 60% relative to that from the conventional. All post-layout simulations were performed using standard UMC 65 nm CMOS technology.

http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2017.0419
Loading

Related content

content/journals/10.1049/iet-cds.2017.0419
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address