http://iet.metastore.ingenta.com
1887

Low-power sample and hold circuits using current conveyor analogue switches

Low-power sample and hold circuits using current conveyor analogue switches

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents low-power sample and hold (S/H) circuits using second-generation current conveyor (CCII). Unlike previous S/H circuits, switch of the proposed S/H circuits can be obtained using CCII which works as current conveyor analogue switch (CCAS). The state of CCAS is controlled by sampling pulse that can be applied via its bias current source. The proposed S/H circuits offer low-power consumption, high-speed and absent from non-overlapping clock signal requirements. Three configurations of S/H circuit are proposed, namely single-ended S/H, differential S/H and serial-to-parallel S/H circuits. The proposed S/H circuits have been simulated using 0.18 µm complementary metal oxide semiconductor (CMOS) process from Taiwan semiconductor manufacturing company (TSMC). The simulation results are used to confirm the workability of the proposed structures.

References

    1. 1)
      • 1. Maloberti, F.: ‘Data converters’ (Springer, The Netherlands, 2007).
    2. 2)
      • 2. Goldberg, J.M., Sandler, M.B.: ‘New high accuracy pulse width modulation based digital-to-analogue convertor/power amplifier’, IEE Proc. Circuits Dev. Syst., 1994, 141, pp. 315324.
    3. 3)
      • 3. Ishihara, N., Akazawa, Y.: ‘A monolithic 156 Mb/s clock and data recovery PLL circuit using the sample-and-hold technique’, IEEE J. Solid-State Circuits, 1994, 29, pp. 15661571.
    4. 4)
      • 4. Wakimoto, T., Akazawa, Y.: ‘Circuits to reduce distortion in the diode-bridge track-and-hold’, IEEE J. Solid-State Circuits, 1993, 28, pp. 384387.
    5. 5)
      • 5. Razavi, B.: ‘Design of a 100-MHz 10-mW 3-V sample-and-hold amplifier in digital bipolar technology’, IEEE J. Solid-State Circuits, 1995, 30, pp. 724730.
    6. 6)
      • 6. Bushehri, E., Thiede, A., Staroselsky, V., et al: ‘Dual bridge 6 Gsample/s track and hold circuit in AlGaAs/GaAs/AlGaAs HEMT technology’, Electron. Lett., 1998, 34, pp. 934936.
    7. 7)
      • 7. Vorenkamp, P., Verdaasdonk, J.P.M.: ‘Fully bipolar, 120-Msample/s 10–b track-and-hold circuit’, IEEE J. Solid-State Circuits, 1992, 27, pp. 988992.
    8. 8)
      • 8. Razavi, B.: ‘Design of sample-and-hold amplifiers for high-speed low-voltage A/D converters’. Proc. IEEE 1997 Custom Integrated Circuits Conf., 1997, pp. 5966.
    9. 9)
      • 9. Fiocchi, C., Gatti, U., Maloberti, F.: ‘Design issues on high-speed high-resolution track-and-holds in BiCMOS technology’, IEE Proc., Circuits Devices Syst., 2000, 147, pp. 100106.
    10. 10)
      • 10. Shirazi, A.N., Mirhaj, S.A., Ashtiani, S.J., et al: ‘Linearity improvement of open-loop NMOS source-follower sample and hold circuits’, IET Circuits Dev. Syst., 2011, 5, pp. 17.
    11. 11)
      • 11. Seon, J.-K.: ‘A 10-b 120-MS/s CMOS track-and-hold amplifier’, Analog Integr. Circuits Signal Process., 2005, 44, pp. 5560.
    12. 12)
      • 12. Seon, J.-K., Nam, K.H., Kang, S.H., et al: ‘A simple and accurate track-and-hold circuit using operational transconductance amplifier’. Proc. IEEE Int. Conf. Mixed Design of Integrated Circuits and Systems, Poland, 2007, pp. 215218.
    13. 13)
      • 13. Chatterjee, S., Kinget, P.R.: ‘A 0.5-V 1-Msps track-and-hold circuit with 60-dB SNDR’, IEEE J. Solid-State Circuits, 2007, 42, pp. 722729.
    14. 14)
      • 14. Seon, J.-K.: ‘A noble track-and-hold amplifier with 10-b 120-MS/s’, Int. J. Electron., 2010, 97, pp. 729736.
    15. 15)
      • 15. Xiang, Y., Xiangning, F., Hao, Z.: ‘Design of sample-and-hold circuit for a reconfigurable ADC’. Proc. of IEEE Int. Conf. on Computer Science and Service System, China, 2010, pp. 12761279.
    16. 16)
      • 16. Vorenkamp, P., Verdaasdonk, J.P.M.: ‘Fully bipolar, 120-Msample/s 10-b track-and-hold circuit’, IEEE J. Solid-State Circuits, 1992, 27, pp. 988992.
    17. 17)
      • 17. Dai, L., Harjani, R.: ‘CMOS switched-op-amp-based sample-and-hold circuit’, IEEE J. Solid-State Circuits, 2000, 35, pp. 109113.
    18. 18)
      • 18. Baschirotto, A.: ‘A low-voltage sample-and-hold circuit in standard CMOS technology operating at 40 ms/s’, IEEE Trans. Circuits Syst. II Analog Digit. Signal Process., 2001, 48, pp. 394399.
    19. 19)
      • 19. Centurelli, F., Monsurro, P., Pennisi, S., et al: ‘Design solutions for sample-and-hold circuits in CMOS nanometer technologies’, IEEE Trans. Circuits Syst. II Express Briefs, 2009, 56, pp. 459463.
    20. 20)
      • 20. Ferreira, L.H.C., Pimenta, T.C., Moreno, R.L.: ‘CMOS implementation of precise sample-and-hold circuit with self-correction of the offset voltage’, IEE Proc. Circuits Dev. Syst., 2005, 152, pp. 451455.
    21. 21)
      • 21. Lee, T.-S., Lu, C.-C.: ‘A 200 MHz 4.8 mW 3 V fully differential CMOS sample-and-hold circuit with low hold pedestal’, Analog Integr. Circuits Signal Process., 2005, 45, pp. 3746.
    22. 22)
      • 22. Lee, T.-S., Lu, C.-C.: ‘A 250 MHz 11 bit 22 mW CMOS low-hold-pedestal fully differential sample-and-hold circuit’, Analog Integr. Circuits Signal Process., 2009, 58, pp. 105113.
    23. 23)
      • 23. Sawigun, C., Serdijn, W.A.: ‘Analysis and design of a low-voltage, low-power, high-precision, class-AB current-mode subthreshold CMOS sample and hold circuit’, IEEE Trans. Circuits Syst. I, 2011, 58, pp. 16151626.
    24. 24)
      • 24. Hwang, Y.-S., Chen, J.-J., Wu, S.-Y., et al: ‘A new pipelined analog-to-digital converter using current conveyors’, Analog Integr. Circuits Signal Process., 2007, 50, pp. 213220.
    25. 25)
      • 25. Hwang, Y.-S., Wang, S.-F., Sheu, P.-W., et al: ‘Novel FBCCII-based sample-and-hold and MDAC circuits’, Int. J. Electron., 2008, 95, pp. 11111117.
    26. 26)
      • 26. Ang, S.-S., Hoque, M.R., Chen, C.-C., et al: ‘A sample-and-hold current measurement integrated circuit for neural recording’, Int. J. Electron., 2006, 93, pp. 793803.
    27. 27)
      • 27. Harb, A.: ‘A programmable full clock rectifier and sample-and-hold amplifier for biomedical applications’, Analog Integr. Circuits Signal Process., 2011, 67, pp. 8994.
    28. 28)
      • 28. Mahmoud, S.A., Nazzal, T.B.: ‘Sample and hold circuits for low-frequency signals in analog-to-digital converter’. Proc. 2015 Int. Conf. Information and Communication Technology Research, 2015, pp. 3639.
    29. 29)
      • 29. Lin, J.-Y., Hsieh, C.-C.: ‘A 0.3 V 10-bit 1.17 f SAR ADC with merge and split switching in 90 nm CMOS’, IEEE Trans. Circuits Syst. I Regul. Pap., 2015, 62, pp. 7079.
    30. 30)
      • 30. Sedra, A., Smith, K.: ‘A second-generation current conveyor and its applications’, IEEE Trans. Circuit Theory, 1970, 17, pp. 132134.
    31. 31)
      • 31. Toumazou, C., Lidgey, F.J., Haigh, D.G.: ‘Analog IC design: the current-mode approach’ (Peter Peregrinus Ltd., London, 1990).
    32. 32)
      • 32. Hatzopoulos, A.A., Siskos, S., Laopoulos, T.: ‘Current conveyor based test structures for mixed-signal circuits’, IEE Proc., Circuits Devices Syst., 1997, 144, pp. 213217.
    33. 33)
      • 33. Kiranon, W., Kumprasert, N.: ‘Square-rooting and vector summation circuits using current conveyors’, IEE Proc. Circuits Dev. Syst., 1998, 149, p. 139.
    34. 34)
      • 34. Stochino, G.: ‘Class AB wide dynamic range bipolar differential voltage-to-current converter with constant transconductance’, Electron. Lett., 1998, 34, pp. 173174.
    35. 35)
      • 35. Ferri, G., De Marcellis, A., Di Carlo, C., et al: ‘A CCII-based low-voltage low-power read-out circuit for DC-excited resistive gas sensors’, IEEE Sens. J., 2009, 9, pp. 20352041.
    36. 36)
      • 36. Sagbas, M., Minaei, S., Ayten, U.E.: ‘Component reduced current-mode full-wave rectifier circuits using single active component’, IET Circuits Dev. Syst., 2016, 10, pp. 111.
    37. 37)
      • 37. Premont, C., Abouchi, N., Grisel, R., et al: ‘A current conveyor-based high-frequency analog switch’, IEEE Trans. Circuits Syst. I, 1998, 45, pp. 298300.
    38. 38)
      • 38. Monpapassorn, A.: ‘An analog switch using a current conveyor’, Int. J. Electron., 2002, 89, pp. 651656.
    39. 39)
      • 39. Monpapassorn, A.: ‘Chopper modulators using current conveyor analogue switches’, Analog Integr. Circuits Signal Process., 2005, 45, pp. 155162.
    40. 40)
      • 40. Monpapassorn, A.: ‘Programmable wide range voltage adder/subtractor and its application as an encoder’, IEE Proc. Circuits Dev. Syst., 2005, 152, pp. 697702.
    41. 41)
      • 41. Angkeaw, K., Prommee, P.: ‘Two digitally programmable gain amplifiers based on current conveyors’, Analog Integr. Circuits Signal Process., 2011, 67, pp. 253260.
    42. 42)
      • 42. Kumngern, M., Torteanchai, U.: ‘CMOS programmable P, PI, PD and PID controller circuit using CCTAs’. Proc. 15th Int. Conf. Electronics, Information, and Communication (ICEIC), Vietnam, 2016, pp. 14.
    43. 43)
      • 43. Nonthaputha, T., Kumngern, M.: ‘Programmable universal filters using current conveyor transconductance amplifiers’, J. Circuits Syst. Comput., 2017, 26, pp. 17501211750144.
    44. 44)
      • 44. Nonthaputha, T., Kumngern, M., Lerkvaranyu, S.: ‘CMOS sample-and-hold circuit using current conveyor analogue switch’. Proc. 2016 Int. Symp. Intelligent Signal Processing and Communication Systems (ISPACS), Thailand, 2016, pp. 14.
    45. 45)
      • 45. Jenq, Y.C.: ‘Digital spectra of nonuniformly sampled signals: a robust sampling time offset estimation algorithm for ultra high-speed waveform digitizers using interleaving’, IEEE Trans. Instrum. Meas., 1990, 39, pp. 7175.
    46. 46)
      • 46. Petraglia, A., Mitra, S.K.: ‘Analysis of mismatch effects among A/D converters in a time-interleaved waveform digitizer’, IEEE Trans. Instrum. Meas., 1991, 40, pp. 831835.
    47. 47)
      • 47. Razavi, B.: ‘Design of sample-and-hold amplifier for high-speed low-voltage A/D converters’. Proc. IEEE Custom Integrated Circuits Conf., USA, 1997, pp. 5966.
    48. 48)
      • 48. Ferri, G., Stornelli, V., Fragnoli, M.: ‘An integrated improved CCII topology for resistive sensor application’, Analog Integr. Circuits Signal Process., 2006, 49, pp. 247250.
    49. 49)
      • 49. Fabre, A., Saaid, O., Wiest, F., et al: ‘Current controlled bandpass filter based on translinear conveyors’, Electron. Lett., 1995, 31, pp. 17271728.
    50. 50)
      • 50. Tangsrirat, W., Surakampontorn, W.: ‘Electronically tunable current-mode universal filter employing only plus-type current-controlled conveyors and grounded capacitors’, Circuits Syst. Signal Process., 2006, 25, pp. 701713.
    51. 51)
      • 51. Kumngern, M., Khateb, F., Phasukkit, P., et al: ‘ECCCII-based current-mode universal filter with orthogonal control of ωo and Q’, Radioengineering, 2014, 23, pp. 687696.
    52. 52)
      • 52. Khateb, F., Jaikla, W., Kubanek, D., et al: ‘Electronically tunable voltage-mode quadrature oscillator based on high performance CCCDBA’, Analog Integr. Circuits Signal Process., 2013, 74, pp. 499505.
    53. 53)
      • 53. Jaikla, W., Khateb, F., Siripongdee, S., et al: ‘Electronically tunable current-mode biquad filter employing CCCDTAs and grounded capacitors with low input and high output impedance’, Int. J. Electron. Commun., 2013, 67, pp. 10051009.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2017.0411
Loading

Related content

content/journals/10.1049/iet-cds.2017.0411
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address