An 114 Hz–12 MHz digitally controlled low-pass filter for biomedical and wireless applications

An 114 Hz–12 MHz digitally controlled low-pass filter for biomedical and wireless applications

For access to this article, please select a purchase option:

Buy eFirst article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents a wide tunable Gm-C low-pass filter for biomedical and wireless applications. The proposed filter was designed using the standard 90 nm complementary metal–oxide–semiconductor technology operating with a balanced supply voltage of 1.2 V. Modified linearisation techniques are used to improve the linearity of the digital programmable operational transconductance amplifiers (DPOTAs) which are used in the filter design. The proposed filter consists of three parallel fourth-order Butterworth sections. Each section is designed and optimised to target a specific band of frequencies. The operation of selecting between the different sections is free of any physical switches. Turning off the unwanted sections is utilised by setting the control bits of the corresponding DPOTAs to zeros. The performance of the proposed filter and DPOTAs is validated through simulation results. The third-order harmonic distortion of the DPOTA remains below −60 dB up to 0.5 V differential input voltage. The simulation results show that the digitally tunable cutoff frequency of the proposed low-pass filter is widely varied in the range of 114 Hz–12 MHz. The proposed filter achieves IIP3 of 28 dBm.

Related content

This is a required field
Please enter a valid email address