http://iet.metastore.ingenta.com
1887

Elastic buffer evaluation for link pipelining under process variation

Elastic buffer evaluation for link pipelining under process variation

For access to this article, please select a purchase option:

Buy eFirst article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
— Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Network-on-chip (NoC) adopted for many-core intercommunications may face long link delay and power consumption limitations. A proven solution is to segment long links with storage elements or repeaters. Besides, a new design paradigm called elastic has been considered in the literature, which seems suitable for NoC designs. In this study, the authors explore the benefit of various elastic-buffer (EB) structures to be used for link pipelining. They study elastic handshaking protocols and explore various elastic buffer designed to be used in NoC era. They propose to use synchronous elastic flow (SELF) handshaking protocol for link pipelining. Results show elastic buffer structure based on SELF-handshaking protocol, which can run at least with 21% higher frequency, has 25% less delay and consumes 8% less power compared with other proposed designs. They have explored the process variation issues with various scenarios on seven different structures. They have improved the SELF-elastic buffer, which is more resilient against process variation, proposing two new structures. The new proposed structures exhibit about 5% better performance and 13% less power delay product variation in average.

http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2017.0394
Loading

Related content

content/journals/10.1049/iet-cds.2017.0394
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address