http://iet.metastore.ingenta.com
1887

Mixed-signal demodulator for IEEE 802.15.6 IR-UWB WBAN energy detection-based receiver

Mixed-signal demodulator for IEEE 802.15.6 IR-UWB WBAN energy detection-based receiver

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A mixed-signal baseband demodulator for IEEE 802.15.6 impulse-radio ultra-wideband (IR-UWB) wireless body area network (WBAN) energy detection-based receiver is presented. It considers M-ary pulse position modulation (PPM) signalling format conforming to the IEEE 802.15.6 WBAN standard. The demodulator utilises ‘integrate-and-digitise’ approach employing simple mixed-signal circuits. The design is implemented in 0.18 μm CMOS technology operating at 1.8 V supply. The demodulator consists of a mixed-signal windowed integrator, a single-ended successive approximation register analogue-to-digital converter followed by a digital back-end. Further, its performance evaluation is carried out for 2-ary and 16-ary PPM signalling in different WBAN channels.

References

    1. 1)
      • 1. Monton, E., Hernandez, J.F., Blasco, J.M., et al: ‘Body area network for wireless patient monitoring’, IET Commun., 2008, 2, (2), pp. 215222.
    2. 2)
      • 2. Wac, K.: ‘Healthcare to go – [comms healthcare]’, Eng. Technol., 2009, 4, (17), pp. 6265.
    3. 3)
      • 3. Movassaghi, S., Abolhasan, M., Lipman, J., et al: ‘Wireless body area networks: a survey’, IEEE Commun. Surv. Tutorials, 2014, 16, (3), pp. 16581686.
    4. 4)
      • 4. ‘IEEE standard for local and metropolitan area networks – Part 15.6’, Wireless Body Area Networks, Std., 2012.
    5. 5)
      • 5. Namgoong, W.: ‘A channelized digital ultrawideband receiver’, IEEE Trans. Wirel. Commun., 2003, 2, (3), pp. 502510.
    6. 6)
      • 6. Daly, D., Mercier, P., Bhardwaj, M., et al: ‘A pulsed UWB receiver SoC for insect motion control’, IEEE J. Solid-State Circuits, 2010, 45, (1), pp. 153166.
    7. 7)
      • 7. Vigraham, B., Kinget, P.: ‘A self-duty-cycled and synchronized UWB pulse-radio receiver SoC with automatic threshold-recovery based demodulation’, IEEE J. Solid-State Circuits, 2014, 49, (3), pp. 581594.
    8. 8)
      • 8. Lee, F.S., Chandrakasan, A.P.: ‘A 2.5 nJ/bit 0.65 V pulsed UWB receiver in 90 nm CMOS’, IEEE J. Solid-State Circuits, 2007, 42, (12), pp. 28512859.
    9. 9)
      • 9. Crepaldi, M., Li, C., Fernandes, J.R., et al: ‘An ultra-wideband impulse-radio transceiver chipset using synchronized-OOK modulation’, IEEE J. Solid-State Circuits, 2011, 46, (10), pp. 22842299.
    10. 10)
      • 10. ‘IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs). Channel Model for Body Area Network (BAN), IEEE 802.15.6 Channel Modeling Subcommittee’, 2009.
    11. 11)
      • 11. Federal Communication Commission (FCC).: ‘First report and order: revision of Part 15 of the commission's rules regarding ultra-wideband transmission systems’. Tech. Rep. ET Docket, Washington, DC, 2002, pp. 98153.
    12. 12)
      • 12. Haga, N., Takahashi, M., Saito, K., et al: ‘A cavity-backed slot antenna for on-body BAN devices’. 2008 Int. Workshop on Antenna Technology: Small Antennas and Novel Metamaterials, Chiba, Japan, 2008, pp. 510513.
    13. 13)
      • 13. Thoppay, P.E., Dehollain, C., Declercq, M.J.: ‘A 7.5 mA 500 MHz UWB receiver based on super-regenerative principle’. 34th European Solid-State Circuits Conf., ESSCIRC, Edinburgh, UK, 2008, pp. 382385.
    14. 14)
      • 14. Lee, F.S., Chandrakasan, A.P.: ‘A 2.5 nJ/b 0.65 V 3-to-5 GHz subbanded UWB receiver in 90 nm CMOS’. IEEE Int. Solid-State Circuits Conf., Digest of Technical Papers, San Francisco, CA, USA, 2007, pp. 116590.
    15. 15)
      • 15. Zeller, S., Muenker, C., Weigel, R., et al: ‘A 0.039 mm2 inverter-based 1.82 mW 68.6 dB-SNDR 10 MHz-BW CT- ΣΔ -ADC in 65 nm CMOS using power- and area-efficient design techniques’, IEEE J. Solid-State Circuits, 2004, 49, (7), pp. 15481560.
    16. 16)
      • 16. Ginsburg, B., Chandrakasan, A.: ‘500-MS/s 5-bit ADC in 65-nm CMOS with split capacitor array DAC’, IEEE J. Solid-State Circuits, 2007, 42, (4), pp. 739747.
    17. 17)
      • 17. Hu, W., Liu, Y.T., Nguyen, T., et al: ‘An 8-bit single-ended ultra-low-power SAR ADC with a novel DAC switching method and a counter-based digital control circuitry’, IEEE Trans. Circuits Syst. I, Reg. Papers, 2013, 60, (7), pp. 17261739.
    18. 18)
      • 18. Hariprasath, V., Guerber, J., Lee, S.-H., et al: ‘Merged capacitor switching based SAR ADC with highest switching energy-efficiency’, Electron. Lett., 2010, 46, (9), pp. 620621.
    19. 19)
      • 19. McCreary, J.L., Gray, P.R.: ‘All-mos charge redistribution analog-to-digital conversion techniques’, IEEE J. Solid-State Circuits, 1975, 10, (6), pp. 371379.
    20. 20)
      • 20. Zhuang, H., Zhu, Z., Yang, Y.: ‘A 19-nW 0.7-V CMOS voltage reference with no amplifiers and no clock circuits’, IEEE Trans. Circuits Syst. II, Exp. Briefs, 2014, 61, (11), pp. 830834.
    21. 21)
      • 21. Ginsburg, B.P., Chandrakasan, A.P.: ‘The mixed signal optimum energy point: voltage and parallelism’. 45th ACM/IEEE Design Automation Conf., Anaheim, CA, USA, 2008, pp. 244249.
    22. 22)
      • 22. Chen, S.W.M., Brodersen, R.W.: ‘A 6-bit 600-MS/s 5.3-mW asynchronous ADC in 0.13 μm CMOS’, IEEE J. Solid-State Circuits, 2006, 41, (12), pp. 26692680.
    23. 23)
      • 23. Ahmed, I., Mulder, J., Johns, D.A.: ‘A 50 MS/s 9.9 mW pipelined ADC with 58 dB SNDR in 0.18 μm CMOS using capacitive charge-pumps’. IEEE Int. Solid-State Circuits Conf. – Digest of Technical Papers, San Francisco, CA, USA, 2009, pp. 164165, 165a.
    24. 24)
      • 24. Shen, Y., Zhu, Z.: ‘Analysis and optimization of the two-stage pipelined SAR ADCs’, Microelectron. J., 2016, 47, pp. 4044.
    25. 25)
      • 25. Wang, S., Dehollain, C.: ‘Design and implementation of a rail-to-rail 460-kS/s 10-bit SAR ADC for the power-efficient capacitance measurement’, IEEE Trans. Instrum. Meas., 2015, 64, (4), pp. 888901.
    26. 26)
      • 26. Minh, H.N., Quoc, D.N., Hoang, T.: ‘A design of 10-bit 25-MS/s SAR ADC using separated clock frequencies with high speed comparator in 180 nm CMOS’. 2015 Int. Conf. on Advanced Technologies for Communications (ATC), Ho Chi Minh City, Vietnam, 2015, pp. 133138.
    27. 27)
      • 27. Walden, R.H.: ‘Analog-to-digital converter survey and analysis’, IEEE J. Sel. Areas Commun., 1999, 17, (4), pp. 539550.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2017.0350
Loading

Related content

content/journals/10.1049/iet-cds.2017.0350
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address