http://iet.metastore.ingenta.com
1887

Soft input decoder for high-rate generalised concatenated codes

Soft input decoder for high-rate generalised concatenated codes

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Generalised concatenated (GC) codes are well suited for error correction in flash memories for high-reliability data storage. The GC codes are constructed from inner extended binary Bose–Chaudhuri–Hocquenghem (BCH) codes and outer Reed–Solomon codes. The extended BCH codes enable high-rate GC codes and low-complexity soft input decoding. This work proposes a decoder architecture for high-rate GC codes. For such codes, outer error and erasure decoding are mandatory. A pipelined decoder architecture is proposed that achieves a high data throughput with hard input decoding. In addition, a low-complexity soft input decoder is proposed. This soft decoding approach combines a bit-flipping strategy with algebraic decoding. The decoder components for the hard input decoding can be utilised which reduces the overhead for the soft input decoding. Nevertheless, the soft input decoding achieves a significant coding gain compared with hard input decoding.

References

    1. 1)
      • 1. Micheloni, R., Marelli, A., Ravasio, R.: ‘Error correction codes for non-volatile memories’ (Springer, Houten, 2008).
    2. 2)
      • 2. Spinelli, A.S., Compagnoni, C.M., Lacaita, A.L.: ‘Reliability of NAND flash memories: planar cells and emerging issues in 3D devices’, Computers, 2017, 6, (2). Available at http://www.mdpi.com/2073-431X/6/2/16, pp. 155.
    3. 3)
      • 3. Zhang, X., Parhi, K.K.: ‘High-speed architectures for parallel long BCH encoders’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2005, 13, (7), pp. 872877.
    4. 4)
      • 4. Freudenberger, J., Spinner, J.: ‘A configurable Bose-Chaudhuri-Hocquenghem codec architecture for flash controller applications’, J. Circuits Syst. Comput., 2014, 23, (2), pp. 115.
    5. 5)
      • 5. Dong, G., Xie, N., Zhang, T.: ‘On the use of soft-decision error-correction codes in NAND flash memory’, IEEE Trans. Circuits Syst. I, Regul.Pap., 2011, 58, (2), pp. 429439.
    6. 6)
      • 6. Zhao, K., Zhao, W., Sun, H., et al: ‘LDPC-in-SSD: making advanced error correction codes work effectively in solid state drives’. Presented as part of the 11th USENIX Conf. File and Storage Technologies (FAST 13), San Jose, CA, USA, 2013, pp. 243256.
    7. 7)
      • 7. Wang, J., Vakilinia, K., Chen, T.-Y., et al: ‘Enhanced precision through multiple reads for LDPC decoding in flash memories’, IEEE J. Sel. Areas Commun., 2014, 32, (5), pp. 880891.
    8. 8)
      • 8. Lin, W., Yen, S.-W., Hsu, Y.-C., et al: ‘A low power and ultra high reliability LDPC error correction engine with digital signal processing for embedded NAND flash controller in 40 nm CMOS’. Symp. on VLSI Circuits Digest of Technical Papers, June 2014, pp. 12.
    9. 9)
      • 9. Haymaker, K., Kelley, C.A.: ‘Structured bit-interleaved LDPC codes for MLC flash memory’, IEEE J. Sel. Areas Commun., 2014, 32, (5), pp. 870879.
    10. 10)
      • 10. Solid-State Drive (SSD) Requirements and Endurance Test Method (JESD218). JEDEC Solid State Technology Association, 2010.
    11. 11)
      • 11. Fahrner, A., Griesser, H., Klarer, R., et al: ‘Low-complexity GEL codes for digital magnetic storage systems’, IEEE Trans. Magn., 2004, 40, (4), pp. 30933095.
    12. 12)
      • 12. Freudenberger, J., Kaiser, U., Spinner, J.: ‘Concatenated code constructions for error correction in non-volatile memories’. Int. Symp. on Signals, Systems, and Electronics (ISSSE), Potsdam, October 2012, pp. 16.
    13. 13)
      • 13. Spinner, J., Freudenberger, J.: ‘Decoder architecture for generalized concatenated codes’, IET Circuits Devices Syst., 2015, 9, (5), pp. 328335.
    14. 14)
      • 14. Dumer, I.: ‘Concatenated codes and their multilevel generalizations’, in Pless, V.S., Huffman, W.C. (Eds.): ‘Handbook of coding theory’, vol. II (Elsevier, Amsterdam, 1998), pp. 19111988.
    15. 15)
      • 15. Zyablov, V., Shavgulidze, S., Bossert, M.: ‘An introduction to generalized concatenated codes’, Eur. Trans. Telecommun., 1999, 10, (6), pp. 609622.
    16. 16)
      • 16. Spinner, J., Rajab, M., Freudenberger, J.: ‘Construction of high-rate generalized concatenated codes for applications in non-volatile flash memories’. 2016 IEEE 8th Int. Memory Workshop (IMW), May 2016, pp. 14.
    17. 17)
      • 17. Zhilin, I., Kreschuk, A.: ‘Generalized concatenated code constructions with low overhead for optical channels and nand-flash memory’. 2016 XV Int. Symp. Problems of Redundancy in Information and Control Systems (REDUNDANCY), September 2016, pp. 177180.
    18. 18)
      • 18. Spinner, J., Freudenberger, J., Shavgulidze, S.: ‘A soft input decoding algorithm for generalized concatenated codes’, IEEE Trans. Commun., 2016, 64, (9), pp. 35853595.
    19. 19)
      • 19. Qi, S., Feng, D., Liu, J.: ‘Optimal voltage signal sensing of NAND flash memory for ldpc code’. 2014 IEEE Workshop on Signal Processing Systems (SiPS), October 2014, pp. 16.
    20. 20)
      • 20. Chase, D.: ‘Class of algorithms for decoding block codes with channel measurement information’, IEEE Trans. Inf. Theory, 1972, 18, (1), pp. 170182.
    21. 21)
      • 21. Wu, C.J., Lue, H.T., Hsu, T.H., et al: ‘Device characteristics of single-gate vertical channel (SGVC) 3D NAND flash architecture’. IEEE 8th Int. Memory Workshop (IMW), May 2016, pp. 14.
    22. 22)
      • 22. Li, H.: ‘Modeling of threshold voltage distribution in NAND flash memory: a Monte Carlo method’, IEEE Trans. Electron Devices, 2016, 63, (9), pp. 35273532.
    23. 23)
      • 23. Lee, D.H., Sung, W.: ‘Estimation of NAND flash memory threshold voltage distribution for optimum soft-decision error correction’, IEEE Trans. Signal Process., 2013, 61, (2), pp. 440449.
    24. 24)
      • 24. Wang, H., Chen, T.Y., Wesel, R.D.: ‘Histogram-based flash channel estimation’. IEEE Int. Conf. Communications (ICC), June 2015, pp. 283288.
    25. 25)
      • 25. Freudenberger, J., Rajab, M., Shavgulidze, S.: ‘Estimation of channel state information for non-volatile flash memories’. IEEE 7th Int. Conf. Consumer Electronics (ICCE), September 2017.
    26. 26)
      • 26. Weiburn, L., Cavers, J.: ‘Improved performance of Reed-Solomon decoding with the use of pilot signals for erasure generation’. 48th IEEE Vehicular Technology Conf., 1998, VTC 98, May 1998, vol. 3, pp. 19301934.
    27. 27)
      • 27. Wu, Y.: ‘New scalable decoder architectures for Reed-Solomon codes’, IEEE Trans. Commun., 2015, 63, (8), pp. 27412761.
    28. 28)
      • 28. Lee, H.: ‘A high-speed low-complexity Reed-Solomon decoder for optical communications’, IEEE Trans. Circuits Syst. II, Express Briefs, 2005, 52, (8), pp. 461465.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2017.0347
Loading

Related content

content/journals/10.1049/iet-cds.2017.0347
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address