http://iet.metastore.ingenta.com
1887

Calibration method to reduce the error in logarithmic conversion with its circuit implementation

Calibration method to reduce the error in logarithmic conversion with its circuit implementation

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Here, based on Mitchell's logarithmic conversion, the authors propose a fast calibration method using a fixed binary code with case judgement, which suppresses the conversion error. The authors developed a highly paralleled circuit serving the proposed calibration method. Differential cascade voltage switch logic (DCVSL) is used to work in both high-speed logic and adiabatic logic and trade-off between power dissipation and operation speed. In addition, a low-cost adiabatic clock generator without any passive component is presented to support a four-phase sine clock for the adiabatic logic operation. An 8-bit logarithmic converter is designed in TSMC 180 nm CMOS. Post-simulation results show that the proposed calibration can reduce the conversion error to 1.55% based on Mitchell's algorithm, the power dissipation varies between 1.12 and 3.709 mW, and the delay is 1.82 ns under operational DCVLS.

References

    1. 1)
      • 1. Chen, Y.J., Hsu, C.H., Hung, C.Y., et al: ‘A 130.3 mW 16-core mobile GPU with power-aware pixel approximation techniques’, IEEE J. Solid-State Circuits, 2015, 50, (9), pp. 22122223.
    2. 2)
      • 2. Chrétien, B., Escande, A., Kheddar, A.: ‘GPU robot motion planning using semi-infinite nonlinear programming’, IEEE Trans. Parallel Distrib. Syst., 2016, 27, (10), pp. 29262939.
    3. 3)
      • 3. Mitchell, J.N.: ‘Computer multiplication and division using binary logarithms’, IRE Trans. Electron. Comput., 1962, 11, (4), pp. 512517.
    4. 4)
      • 4. Mahalingam, V., Nagarajan, R.: ‘Improving accuracy in Mitchell's logarithmic multiplication using operand decomposition’, IEEE Trans. Comput., 2006, 55, (12), pp. 15231535.
    5. 5)
      • 5. Combet, M., Zonneveld, H.V., Verbeek, L.: ‘Computation of the base two logarithm of binary numbers’, IEEE Trans. Electron. Comput., 1965, 14, (6), pp. 863867.
    6. 6)
      • 6. Juang, T.B., Chen, S.H., Cheng, H.J.: ‘A lower error and rom-free logarithmic converter for digital signal processing applications’, IEEE Trans. Circuits Syst. II, Express Briefs, 2009, 56, (12), pp. 931935.
    7. 7)
      • 7. Juang, T.B., Meher, P.K., Jan, K.S.: ‘High-performance logarithmic converters using novel two-region bit-level manipulation schemes’. Proc. of 2011 IEEE Int. Symp. on VLSI Design, Automation and Test, Hsinchu, Taiwan, April 2011, pp. 14.
    8. 8)
      • 8. Kostopoulos, D.K.: ‘An algorithm for the computation of binary logarithms’, IEEE Trans. Comput., 1991, 40, (11), pp. 12671270.
    9. 9)
      • 9. SanGregory, S.L., Brothers, C., Gallagher, D., et al: ‘A fast, low-power logarithm approximation with CMOS VLSI implementation’. Proc. of 1999 IEEE Midwest Symp. on Circuits and Systems, Las Cruces, USA, August 1999, pp. 388391.
    10. 10)
      • 10. Huang, S.C., Chen, L.G., Chen, T.H.: ‘The chip design of a 32-b logarithmic number system’. Proc. of 1994 IEEE Int. Symp. on Circuits and Systems (ISCAS), London, UK, May 1994, pp. 167170.
    11. 11)
      • 11. Fit-Florea, A., Li, L., Thornton, M.A., et al: ‘A discrete logarithm number system for integer arithmetic modulo 2k: algorithms and lookup structures’, IEEE Trans. Comput., 1994, 141, (5), pp. 281292.
    12. 12)
      • 12. Wan, Y., Wey, C.L.: ‘Efficient algorithms for binary logarithmic conversion and addition’, IEE Proc., Comput. Digit. Tech., 1999, 146, (3), pp. 168172.
    13. 13)
      • 13. Lai, F.S.: ‘The architecture and analysis of a hybrid number system processor’. Proc. of 1992 IEEE Int. Symp. on Circuits and Systems (ISCAS), San Diego, USA, May 1992, pp. 803806.
    14. 14)
      • 14. Lo, H.Y.: ‘Generation of a precise binary logarithm with difference grouping programmable logic array’, IEEE Trans. Comput., 1985, 100, (8), pp. 681691.
    15. 15)
      • 15. Abed, K.H., Siferd, R.E.: ‘VLSI implementations of low-power leading-one detector circuits’. Proc. of the IEEE SoutheastCon 2006, Memphis, USA, March 2006, pp. 279284.
    16. 16)
      • 16. Gok, M., Schulte, M.J., Arnold, M.G.: ‘Integer multipliers with overflow detection’, IEEE Trans. Comput., 2006, 55, (8), pp. 10621066.
    17. 17)
      • 17. Abed, K.H., Siferd, R.E.: ‘CMOS VLSI implementation of 16-bit logarithm and anti-logarithm converters’. Proc. of 2000 IEEE Midwest Symp. on Circuits and Systems, Lansing, USA, August 2000, pp. 776779.
    18. 18)
      • 18. Maksimovic, D., Oklobdzija, V.G., Nikolic, B., et al: ‘Clocked CMOS adiabatic logic with integrated single-phase power-clock supply’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2000, 8, (4), pp. 460463.
    19. 19)
      • 19. Tenace, V., Calimera, A., Macii, E., et al: ‘Quasi-adiabatic logic arrays for silicon and beyond-silicon energy-efficient ICs’, IEEE Trans. Circuits Syst. II, Express Briefs, 2016, 63, (12), pp. 11111115.
    20. 20)
      • 20. Kim, C., Yoo, S.M., Kang, S.M.: ‘Low-power adiabatic computing with NMOS energy recovery logic’, Electron. Lett., 2000, 36, (16), pp. 13491350.
    21. 21)
      • 21. Gutierrez, R., Valls, J.: ‘Low cost hardware implementation of logarithm approximation’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2011, 19, (12), pp. 23262330.
    22. 22)
      • 22. ‘Properties of logarithmic functions’. Available at http://www.montereyinstitute.org/courses/DevelopmentalMath/TEXTGROUP-1-19_RESOURCE/U18_L2_T2_text_final.html, accessed May 2017.
    23. 23)
      • 23. Lee, H.J., Kim, Y.B.: ‘Low power null convention logic circuit design based on DCVSL’. Proc. of 2013 IEEE Int. Midwest Symp. on Circuits and Systems, Columbus, USA, August 2013, pp. 2932.
    24. 24)
      • 24. Sathe, V.S., Chueh, J.Y., Papaefthymiou, M.C.: ‘Energy-efficient GHz-class charge-recovery logic’, IEEE J. Solid-State Circuits, 2007, 42, (1), pp. 3847.
    25. 25)
      • 25. Rabaey, J., Chandrakasan, A., Nikolić, B.: ‘Digital integrated circuits’ (Upper Saddle River, New Jersey, 2003).
    26. 26)
      • 26. Kim, J.M., Yoo, H.J.: ‘Bitwise competition logic for compact digital comparator’. Proc. of 2007 IEEE Asian Solid-State Circuits Conf., Jeju, Korea, November 2007, pp. 5962.
    27. 27)
      • 27. Teichmann, P.: ‘Adiabatic logic: future trend and system level perspective’ (Springer Science & Business Media, Berlin, Germany, 2011).
    28. 28)
      • 28. Stoffi, A.B., Amirante, E., Fischer, J., et al: ‘Resonant 90 degree shifter generator for 4-phase trapezoidal adiabatic logic’, Adv. Radio Sci., 2003, 1, (9), pp. 243246.
    29. 29)
      • 29. Nakata, S., Makino, H., Matsuda, Y.: ‘A new stepwise adiabatic charging circuit with a smaller capacitance in a regenerator than a load capacitance’. Proc. of 2014 IEEE Int. Midwest Symp. on Circuits and Systems, College Station, USA, August 2014, pp. 439442.
    30. 30)
      • 30. Zhao, Z., Srivastava, A., Peng, L., et al: ‘A low-cost mixed clock generator for high speed adiabatic logic’. Proc. of 2016 IEEE Computer Society Annual Symp. on VLSI (ISVLSI), Pittsburgh, USA, July 2016, pp. 587590.
    31. 31)
      • 31. Jovanovic, G., Stojcev, M., Stamenkovic, Z.: ‘A CMOS voltage controlled ring oscillator with improved frequency stability’, Sci. Publ. State Univ. Novi Pazar, Ser. A: Appl. Math. Inf. Mech., 2010, 2, (1), pp. 19.
    32. 32)
      • 32. Abed, K.H., Siferd, R.E.: ‘CMOS VLSI implementation of a low-power logarithmic converter’, IEEE Trans. Comput., 2003, 52, (11), pp. 14211433.
    33. 33)
      • 33. Caro, D.D., Genovese, M., Napoli, E., et al: ‘Accurate fixed-point logarithmic converter’, IEEE Trans. Circuits Syst. II, Express Briefs, 2014, 61, (7), pp. 526530.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2017.0315
Loading

Related content

content/journals/10.1049/iet-cds.2017.0315
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address