http://iet.metastore.ingenta.com
1887

Efficient digit-serial modular multiplication algorithm on FPGA

Efficient digit-serial modular multiplication algorithm on FPGA

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

For cryptographic applications, such as DSA, RSA and ECC systems, the crypto-processors are required to perform modular multiplication (MM) on large integers over Galois field. A new digit-serial MM method is presented by using a variable size lookup table. The proposed modular multiplier can be designed for any digit-size d and modulus M which only requires simple operations such as addition and shifting. Based on theoretical analysis, the efficient digit-serial MM architecture requires the latency of clock cycles. As a result, the developed architecture can achieve less area–delay product on hardware when compared with previous designs.

References

    1. 1)
      • 1. Rivest, R.L., Shamir, A., Adleman, L.: ‘A method for obtaining digital signatures and public-key cryptosystems’, Commun. ACM, 1978, 21, pp. 120126.
    2. 2)
      • 2. IEEE Std 1363-2000: ‘IEEE standard specifications for public-key cryptography’, 2000.
    3. 3)
      • 3. Diffie, W., Hellman, M.: ‘New directions in cryptography’, IEEE Trans. Inf. Theory, 1976, 22, pp. 644654.
    4. 4)
      • 4. Blakely, G.R.: ‘A computer algorithm for calculating the product AB modulo M’, IEEE Trans. Comput., 1978, 32, pp. 497500.
    5. 5)
      • 5. Takagi, N.: ‘A radix-4 modular multiplication hardware algorithm for modular exponentiation’, IEEE Trans. Comput., 1992, 41, pp. 949956.
    6. 6)
      • 6. Kornerup, P.: ‘High-radix modular multiplication for cryptosystems’. Proc. 11th IEEE Symp. Computer Arithmetic (ARITH-11), Windsor, Ont., Canada, 1993, pp. 277283.
    7. 7)
      • 7. Walter, C.D.: ‘Systolic modular multiplication’, IEEE Trans. Comput., 1993, 42, pp. 376378.
    8. 8)
      • 8. Koç, Ç.K., Acar, T., Kaliski, B.S.: ‘Analyzing and comparing Montgomery multiplication algorithms’, IEEE Micro, 1992, 16, pp. 2633.
    9. 9)
      • 9. Blum, T., Paar, C.: ‘High-radix Montgomery modular exponentiation on reconfigurable hardware’, IEEE Trans. Comput., 2001, 50, pp. 759764.
    10. 10)
      • 10. Hong, J.H., Wu, C.W.: ‘Cellular-array modular multiplier for fast RSA public-key cryptosystem based on modified Booth's algorithm’, IEEE Trans. Very Large Scale Integr. Syst., 2003, 11, pp. 474484.
    11. 11)
      • 11. Miyamoto, A., Homma, N., Aoki, T., et al: ‘Systematic design of RSA processors based on high-radix Montgomery multipliers’, IEEE Trans. Very Large Scale Integr. Syst., 2011, 19, pp. 11361146.
    12. 12)
      • 12. Huang, M., Gaj, K., El-Ghazawi, T.: ‘New hardware architectures for Montgomery modular multiplication algorithm’, IEEE Trans. Comput., 2011, 60, pp. 923936.
    13. 13)
      • 13. Shieh, M.D., Chen, J.H., Lin, W.C., et al: ‘A new algorithm for high-speed modular multiplication design’, IEEE Trans. Circuits Syst. I. Regul. Pap., 2009, 56, pp. 20092019.
    14. 14)
      • 14. Tenca, A.F., Koç, Ç.K.: ‘A scalable architecture for modular multiplication based on Montgomery's algorithm’, IEEE Trans. Comput., 1993, 52, pp. 12151221.
    15. 15)
      • 15. Shieh, M.D., Chen, J.H., Wu, H.H., et al: ‘A new modular exponentiation architecture for efficient design of RSA cryptosystem’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2008, 16, pp. 11511161.
    16. 16)
      • 16. Kuang, S.R., Wang, J.P., Chang, K.C., et al: ‘Energy-efficient high-throughput Montgomery modular multipliers for RSA cryptosystems’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2013, 21, pp. 19992009.
    17. 17)
      • 17. Kuang, S.R., Wu, K.Y., Lu, R.Y.: ‘Low-cost high-performance VLSI architecture for Montgomery modular multiplication’, IEEE Trans. Very Large Scale Integr. Syst., 2016, 24, pp. 434443.
    18. 18)
      • 18. Shieh, M.D., Lin, W.C.: ‘Word-based Montgomery modular multiplication algorithm for low-latency scalable architectures’, IEEE Trans. Comput., 2010, 59, pp. 11451151.
    19. 19)
      • 19. Kaihara, M.E., Takagi, N.: ‘A hardware algorithm for modular multiplication/division’, IEEE Trans. Comput., 2005, 54, pp. 1221.
    20. 20)
      • 20. Barrett, P.D.: ‘Implementing the Rivest Shamir and Adleman public key encryption algorithm on a standard digital signal processor’. Proc. Int. Cryptology Conf. Advances in Cryptology (CRYPTO ’86), 1987, pp. 311–323.
    21. 21)
      • 21. Montgomery, P.L.: ‘Modular multiplication without trial division’, Math. Comput., 1985, 44, pp. 519521.
    22. 22)
      • 22. Pai, Y.T., Chen, Y.K.: ‘The fastest carry lookahead adder’. Proc. Second IEEE Int. Workshop on Electronic Design, Test and Applications (DELTA'04), 2004, pp. 434436.
    23. 23)
      • 23. Erdem, S.S., Yank, T., Çelebi, A.: ‘A general digit-serial architecture for Montgomery modular multiplication’, IEEE Trans. Very Large Scale Integr. Syst., 2017, 25, pp. 16581668.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2017.0300
Loading

Related content

content/journals/10.1049/iet-cds.2017.0300
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address