http://iet.metastore.ingenta.com
1887

Hardware implementation and VLSI design of spectrum sensor for next-generation LTE-A cognitive-radio wireless network

Hardware implementation and VLSI design of spectrum sensor for next-generation LTE-A cognitive-radio wireless network

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This paper presents reconfigurable and hardware-efficient VLSI architecture of time domain cyclostationary-feature detector (TCD) for spectrum sensing in the cognitive-radio wireless network. It incorporates new architecture for autocorrelator that supports the entire range of subcarriers used by orthogonal frequency division multiplexing signals compliant to 4G LTE-Advanced wireless network. A novel scheme of overflow/underflow protection is proposed for the coordinate rotation digital computer engine of TCD. Additionally, hardware-efficient techniques have been introduced for the multiply-&-accumulate and accumulator architectures of suggested TCD design. Real-world signals are captured using universal software radio peripheral devices and are fed to its FPGA prototype. An application specific integrated circuit synthesis and post-layout simulation of the proposed detector have been performed using 65 nm-CMOS technology and it occupies 0.32 mm2 of core area and consumes total power of 18.5 mW at 100 MHz clock frequency. In comparison with the state-of-the-art works, the proposed detector requires 34 and 93% lesser hardware resource and memory, respectively

Inspec keywords: cognitive radio; next generation networks; Long Term Evolution; AWGN channels; 4G mobile communication; integrated circuit layout; OFDM modulation; CMOS integrated circuits; application specific integrated circuits; software radio; VLSI; radio spectrum management; wireless sensor networks; signal detection; field programmable gate arrays

Other keywords: real-world signals; accumulator architectures; size 65.0 nm; frequency 1.0 MHz; universal software radio peripheral devices; spectrum sensor; FPGA; rotation digital computer engine; frequency 100.0 MHz; signal-to-noise ratios; multiply-&-accumulate architecture; OFDM signals; field programmable gate array; orthogonal frequency division multiplexing; united-microelectronics-corporation complementary metal–oxide–semiconductor technology; spectrum sensing; application specific integrated circuit synthesis; TCD design; time 5.12 ms; hardware-efficient very large-scale integration architecture; clock frequency; power 18.5 mW; VLSI design; additive white Gaussian noise channel environment; post-layout simulation; hardware-efficient techniques; OFDM-based communication system; autocorrelator; 4G LTE-Advanced; next-generation LTE-A cognitive-radio wireless network; overflow-underflow protection; performance analysis; time-domain cyclostationary-feature detector

Subjects: Modulation and coding methods; Signal detection; CMOS integrated circuits; Mobile radio systems; Semiconductor integrated circuit design, layout, modelling and testing; Logic circuits; Wireless sensor networks

References

    1. 1)
      • 1. Haykin, S.: ‘Cognitive radio: brain-empowered wireless communications’, IEEE J. Sel. Areas Commun., 2005, 23, (2), pp. 201220.
    2. 2)
      • 2. Bhat, P., Nagata, S., Campoy, L., et al: ‘LTE-Advanced: an operator perspective’, IEEE Commun. Mag., 2012, 50, (2), pp. 104114.
    3. 3)
      • 3. Boccardi, F., Heath, R. W., Lozano, A., et al: ‘Five disruptive technology directions for 5G’, IEEE Commun. Mag., 2014, 52, (4), pp. 7480.
    4. 4)
      • 4. Zeng, Y., Liang, Y.C.: ‘Spectrum-sensing algorithms for cognitive radio based on statistical covariances’, IEEE Trans. Veh. Technol., 2009, 58, (4), pp. 18041815.
    5. 5)
      • 5. Vijay, G., Bdira, E.B.A., Ibnkahla, M., et al: ‘Cognition in wireless sensor networks: a perspective’, IEEE Sens. J., 2011, 11, (3), pp. 582592.
    6. 6)
      • 6. Hossain, E., Niyato, D., Han, Z., et al: ‘Dynamic spectrum access and management in cognitive radio networks’ (Cambridge, USA, 2009).
    7. 7)
      • 7. Chaudhari, S.: ‘Phd thesis: spectrum sensing for cognitive radios: algorithms, performance and limitations’, phdthesis, Aalto University School of Electrical Engineering, Nov. 2012.
    8. 8)
      • 8. Yucek, T., Arslan, H.: ‘A survey of spectrum sensing algorithms for cognitive radio applications’, IEEE Commun. Surv. Tutorials, 2009, 11, (1), pp. 116130.
    9. 9)
      • 9. Lundn, J., Kassam, S.A., Koivunen, V.: ‘Robust nonparametric cyclic correlation-based spectrum sensing for cognitive radio’, IEEE Trans. Signal Process., 2010, 58, (1), pp. 3852.
    10. 10)
      • 10. Rebeiz, E., Urriza, P., Cabric, D., et al: ‘Optimizing wideband cyclostationary spectrum sensing under receiver impairments’, IEEE Trans. Signal Process., 2013, 61, (15), pp. 39313943.
    11. 11)
      • 11. Kosunen, M., Turunen, V., Kokkinen, K., et al: ‘Survey and analysis of cyclostationary signal detector implementations on FPGA’, IEEE J. Emerg. Sel. Topics Circuits Syst., 2013, 3, (4), pp. 541551.
    12. 12)
      • 12. IEEE, ‘Cognitive wireless RAN medium access control (MAC) and physical layer (PHY) specifications’, IEEE 802.22 b Std., 2015.
    13. 13)
      • 13. Srinu, S., Sabat, S.L.: ‘FPGA implementation of spectrum sensing based on energy detection for cognitive radio’. Proc. Int. Conf. on Communication Control and Computing Technologies (ICCCCT), 2010, pp. 126131.
    14. 14)
      • 14. Chaitanya, G.V., Rajalakshmi, P., Desai, U. B., et al: ‘Real time hardware implementable spectrum sensor for cognitive radio applications’. Proc. Int. Conf. on Signal Processing and Communications (SPCOM), 2012, pp. 15.
    15. 15)
      • 15. Joshi, G.P., Nam, S.Y., Kim, S.W., et al: ‘Cognitive radio wireless sensor networks: applications, challenges and research trends’, Sensors, 2013, 13, (9), pp. 11 19611 228.
    16. 16)
      • 16. De la Roche, G., Alayn Glazunov, A., Allen, B.: ‘LTE-Advanced and next generation wireless networks: channel modelling and propagation’ (Wiley, USA, 2012).
    17. 17)
      • 17. Turunen, V., Kosunen, M., Huttunen, A., et al: ‘Implementation of cyclostationary feature detector for cognitive radios’. Proc. Int. Conf. Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM), 2009, pp. 14.
    18. 18)
      • 18. Kallioinen, S., Vääräkangas, M., Hui, P., et al: ‘Multi-mode, multi-band spectrum sensor for cognitive radios embedded to a mobile phone’. Proc. Int. Conf. Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM), 2011, pp. 236240.
    19. 19)
      • 19. Chaudhari, S., Kosunen, M., Mäkinen, S., et al: ‘Performance evaluation of cyclostationary-based cooperative sensing using field measurements’, IEEE Trans. Veh. Technol., 2016, 65, (4), pp. 19821997.
    20. 20)
      • 20. Gardner, W.A., Franks, L.: ‘Characterization of cyclostationary random signal processes’, IEEE Trans. Inf. Theory, 1975, 21, (1), pp. 414.
    21. 21)
      • 21. Dandawate, A.V., Giannakis, G. B.: ‘Statistical tests for presence of cyclostationarity’, IEEE Trans Sig. Process., 1994, 42, (9), pp. 23552369.
    22. 22)
      • 22. Lundn, J., Koivunen, V., Huttunen, A., et al: ‘Spectrum sensing in cognitive radios based on multiple cyclic frequencies’. Proc. Int. Conf. Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM), 2007, pp. 3743.
    23. 23)
      • 23. Neyman, J., Pearson, E.S.: ‘On the problem of the most efficient tests of statistical hypotheses’, Philos. Trans. R. Soc. A: Math., Phys. Eng. Sci., 1933, 231, (694–706), p. 289?337.
    24. 24)
      • 24. 3GPP, 3GPP TS 36.211, technical specification, V13.2.0, 3GPP Std., 06, 16.
    25. 25)
      • 25. Meher, P.K., Valls, J., Juang, T.-B., et al: ‘50 years of CORDIC: algorithms, architectures, and applications’, IEEE Trans. Circuits Syst. I, Reg. Pap., 2009, 56, (9), pp. 18931907.
    26. 26)
      • 26. Walther, J.S.: ‘A unified algorithm for elementary functions’. Proc. Spring Joint Computer Conf., 1971, pp. 379385.
    27. 27)
      • 27. Walther, J.S.: ‘The story of unified CORDIC’, J. VLSI Signal Process., 2000, 25, (2), pp. 107112.
    28. 28)
      • 28. Crenshaw, J.W.: ‘Math toolkit for real-time development’ (CRC Press, USA, 2000).
    29. 29)
      • 29. Khan, S.A.: ‘Digital design of signal processing systems: a practical approach’ (Wiley, UK, 2011).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2017.0292
Loading

Related content

content/journals/10.1049/iet-cds.2017.0292
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address