Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Performance enhancement of a VCO using symbolic modelling and optimisation

This study proposed an application of symbolic technique on the characterisation of a ring voltage controlled oscillator (VCO) for optimum performance. Here nullor-based symbolic noise modelling and analysis of the CMOS ring VCO is carried out. Circuit equations are processed through modelling of all the metal–oxide–semiconductor field-effect transistors with their nullor equivalent. The closed-form expressions for the total output noise density and phase noise of VCO are obtained. With this technique, the total output noise density and phase noise calculated are compared with the results obtained from the transistor-level simulation. From the comparison, it has been observed that the nullor-based modelling and analysis simplifies the noise expression as well as reduces CPU execution time. The performance enhancement of the VCO is carried out using two different optimisation techniques. These are particle swam optimisation and non-dominated sorting genetic algorithm. The results obtained for the optimised VCO are then tested using SPICE. The SPICE result shows a significant improvement in phase noise, power consumption and tuning range for the optimised VCO.

References

    1. 1)
      • 24. Vural, R.A., Yildirim, T.: ‘Analog circuit sizing via swarm intelligence’, Int. J. Electron. Commun., 2012, 66, (9), pp. 732740.
    2. 2)
      • 6. Patnaik, S.K., Banerjee, S.: ‘Symbolic noise modeling, analysis and optimization of a CMOS input buffer’, Analog Integr. Circuits Signal Process., 2012, 70, pp. 293302.
    3. 3)
      • 10. Sanabria-Borbón, A.C., Tlelo-Cuautle, E.: ‘Sizing analogue integrated circuits by integer encoding and NSGA-II’, IETE Tech. Rev., 2017, pp. 17.
    4. 4)
      • 15. Fakhfakh, M., Cooren, Y., Sallem, A., et al: ‘Analog circuit design optimization through the particle swarm optimization technique’, J. Analog Integr. Circuits Signal Process., 2010, 63, (1), pp. 7182.
    5. 5)
      • 2. Huang, Q., Piazza, F., Orsatti, P., et al: ‘The impact of scaling down to deep submicron on CMOS RF circuits’, IEEE J. Soild State Circuits, 1998, 33, pp. 10231036.
    6. 6)
      • 7. Shi, G., Tan, S.X.-D., Tlelo-Cuautle, E.: ‘Advanced symbolic analysis for VLSI systems-methods and applications’ (Springer, New York, USA, 2014).
    7. 7)
      • 20. Guerra-Gómeza, I., Tlelo-Cuautle, E., de la Fraga, L.G.: ‘Richardson extrapolation-based sensitivity analysis in the multi-objective optimization of analog circuits’, Appl. Math. Comput., 2013, 222, pp. 167176.
    8. 8)
      • 12. Gray, P.R., Hurst, P.J., Lewis, S.H., et al: ‘Analysis and design of analog integrated circuits’ (Wiley, New York, 2001).
    9. 9)
      • 8. Rout, P.K., Acharya, D.P., Panda, G.: ‘A multi-objective optimization based fast and robust design methodology for low power and low phase noise current starved VCO’, IEEE Trans. Semicond. Manuf., 2014, 27, (1), pp. 4350.
    10. 10)
      • 19. Abidi, A.A.: ‘Phase noise and jitter in CMOS ring oscillators’, IEEE J. Solid-State Circuits, 2006, 41, (8), pp. 18031816.
    11. 11)
      • 1. Razavi, B.: ‘Design of analog CMOS integrated circuit’ (McGraw-Hill, New York, 2000).
    12. 12)
      • 4. Martinez-Romero, E., Tlelo-Cuautle, E., Sánchez-López, C., Tan, S.X.-D.: ‘Symbolic noise analysis of low voltage amplifiers by using nullors’. Int. Workshop on Symbolic and Numerical Methods, Modeling and Applications to Circuit Design (SM2ACD), Tunisia, 5–6 October 2010.
    13. 13)
      • 22. Cai, Z., Wang, Y.: ‘A multi-objective optimization-based evolutionary algorithm for constrained optimization’, IEEE Trans. Evol. Comput., 2006, 10, (6), pp. 658675.
    14. 14)
      • 23. Kennedy, J., Eberhart, R.C.: ‘Swarm intelligent’ (Morgan Kaufmann, San Francisco, CA, USA, 2001).
    15. 15)
      • 3. Chen, C.H., Deen, M.J., Matloubian, M., et al: ‘Extraction of the channel thermal noise in MOSFETs’. Int. Conf. Microelectronic Test Structures, 2000.
    16. 16)
      • 16. Baker, R.J., Li, H.W., Boyce, D.E.: ‘CMOS Circuit design, layout, and simulation’ (IEEE Press Series on Microelectronic Systems, NJ, USA, 2002).
    17. 17)
      • 18. Razavi, B.: ‘A study of phase noise in CMOS oscillators’, IEEE J. Solid-State Circuits, 1996, 31, (3), pp. 331343.
    18. 18)
      • 5. Śanchez- Ĺopez, C., Ferńandez, F.V., Tlelo-Cuautle, E., et al: ‘Pathological element-based active device models and their application to symbolic analysis’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2011, 58, (6), pp. 13821395.
    19. 19)
      • 14. Hajimiri, A., Limotyrakis, S., Lee, T.H.: ‘Jitter and phase noise in ring oscillators’, IEEE J. Solid-State Circuits, 1999, 34, (6), pp. 790804.
    20. 20)
      • 13. Sánchez-López, C., Tlelo-Cuautle, E.: ‘Symbolic noise analysis in Gm-C filters’, IEEE CERMA, 2006, 1, pp. 4953.
    21. 21)
      • 11. Ghai, D., Mohanty, S.P., Thakral, G.: ‘Fast optimization of nano-CMOS voltage-controlled oscillator using polynomial regression and genetic algorithm’, Microelectron. J., 2013, 44, (8), pp. 631641.
    22. 22)
      • 25. Deb, K., Pratap, A., Agarwal, S., et al: ‘A fast elitist multiobjective genetic algorithm: NSGA-II’, IEEE Trans. Evol. Comput., 2002, 6, (2), pp. 182197.
    23. 23)
      • 9. Fakhfakh, M., Tlelo-Cuautle, E., Fernández, F.V.: ‘Design of analog circuits through symbolic analysis’ (Bentham Sciences Publishers Ltd., Sharjah, UAE, 2010).
    24. 24)
      • 21. Guerra-Gomez, I., Tlelo-Cuautle, E.: ‘Sizing analog integrated circuits by current-branches-bias assignments with heuristics’, Elektron. Elektrotech., 2013, 19, (10), pp. 8186.
    25. 25)
      • 17. Lee, T.H., Hajimiri, A.: ‘Oscillator phase noise: a tutorial’, IEEE J. Solid-State Circuits, 2000, 35, pp. 326336.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2017.0271
Loading

Related content

content/journals/10.1049/iet-cds.2017.0271
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address