access icon free Quadrature voltage control oscillator with a linear tuning law

New realisation scheme of linear voltage-controlled quadrature oscillator (QO) is proposed. The active building block is electronically tunable (ET) differential voltage current conveyor transconductance (gm ) amplifier configured with current feedback amplifier and multiplication mode current conveyor devices. The designs are essentially tuned-inductor–capacitor oscillator, wherein the electronically variable lossless grounded inductor (L) had been simulated at suitable nodes of the active building block. Subsequently, with slight modification of the block, an ET floating-lossless immittance function generation is presented. Effects of device port mismatch error and parasitic capacitances are analysed. Albeit sensitivity relative to port mismatch error is negligible, the parasitic components tend to limit the higher-usable frequency range; appropriate design equations are derived for a true bilinear admittance function realisation and their applications to filter and sinusoid oscillator design are included. Experimental results on the QO with linear fo -tuning law are satisfactorily verified up to 8.7 MHz at low total harmonic distortion.

Inspec keywords: harmonic distortion; current conveyors; capacitors; voltage-controlled oscillators; feedback amplifiers; inductors

Other keywords: ET floating-lossless immittance function generation; current feedback amplifier; realisation scheme; linear voltage-controlled quadrature oscillator; quadrature voltage control oscillator; device port mismatch error; parasitic capacitances; multiplication mode current conveyor devices; differential voltage current conveyor; filter oscillator; total harmonic distortion; higher-usable frequency range; transconductance amplifier; tuned-inductor–capacitor oscillator; sinusoid oscillator; true bilinear admittance function realisation; active building block; electronically variable lossless grounded inductor; linear tuning law

Subjects: Amplifiers; Active filters and other active networks; Oscillators

References

    1. 1)
      • 10. Yucel, F., Yuce, E.: ‘A new single CCII-based voltage-mode, first-order all-pass filter and its quadrature oscillator application’, Sci. Irania (D), 2015, 22, pp. 10681076.
    2. 2)
      • 15. Herencsar, N., Lahiri, A., Vrbaa, K., et al: ‘An electronically tunable current-mode quadrature oscillator using PCAs’, Int. J. Electron., 2012, 99, pp. 609621.
    3. 3)
      • 31. Intersil Datasheet: file#2477.5, September 1998 and file#2863, April 1999.
    4. 4)
      • 32. Tammam, A.A., Hayatleh, K., Ben-Esmael, M., et al: ‘Critical review of the circuit architecture of CFOA’, Int. J. Electron., 2014, 101, pp. 441451.
    5. 5)
      • 18. Hwang, Y.S., Liu, W.H., Tu, S.H., et al: ‘New building block: multiplication mode current conveyor’, IET Circuits Devices Syst., 2009, 3, pp. 4148.
    6. 6)
      • 17. Raman, J., Rombouts, P., Weyten, L.: ‘Simple quadrature oscillator for BIST’, Electron. Lett., 2010, 46, pp. 271272.
    7. 7)
      • 34. Analog Devices: ‘Linear products databook’ (Norwood, MA, USA, 1990).
    8. 8)
      • 30. Yuce, E., Minaei, S.: ‘A modified CFOA and its applications to simulated inductors, capacitance multipliers, and analog filters’, IEEE Trans. Circuits Syst. (I), 2008, 55, pp. 266275.
    9. 9)
      • 9. Jantakun, A., Jaikla, W.: ‘Active-only current-mode first-order all pass filter and its application in quadrature oscillator’, Indian J. Pure Appl. Phys., 2015, 53, pp. 557563.
    10. 10)
      • 36. Hribseck, M., Newcomb, R.W.: ‘Voltage controlled by one resistor’, IEEE Trans. Circuit. Syst., 1976, CAS-23, pp. 166169.
    11. 11)
      • 14. Pattanayak, S., Mathur, K., Venkateswaran, P., et al: ‘Current signal output electronically variable quadrature sinusoid oscillator with linear tuning law’, J. Act. Passive Electron. Devices, 2015, 10, pp. 197205.
    12. 12)
      • 23. Nandi, R.: ‘Lossless inductor simulation: novel configurations using DVCCS’, Electron. Lett., 1980, 16, pp. 666667.
    13. 13)
      • 4. Khateb, F., Jaikla, W., Kubanek, D., et al: ‘Electronically tunable voltage-mode quadrature oscillator based on high performance CCCDBA’, Analog Integr. Circuits Signal Process., 2013, 74, pp. 499505.
    14. 14)
      • 13. Nandi, R., Mathur, K., Pattanayak, S.: ‘Electronically tunable all pass filter: linear VCO design’, IEICE Electron. Express, 2016, 13, pp. 16.
    15. 15)
      • 33. Horng, J.W.: ‘Lossless inductance simulation and voltage mode universal biquadratic filter with one input and five outputs using DVCCs’, Analog Integr. Circuits Signal Process., 2010, 62, pp. 407413.
    16. 16)
      • 20. Pal, K.: ‘Modified current conveyors and their applications’, Microelectron. J., 1989, 20, pp. 3740.
    17. 17)
      • 2. Jin, J., Wang, C.: ‘Single CDTA-based current-mode quadrature oscillator’, Int. J. Electron. Commun. (AEU), 2012, 66, pp. 933936.
    18. 18)
      • 38. www.vishay.com/docs/20043/crcwhpe3.pdf, Accessed (Sept 2016).
    19. 19)
      • 12. Horng, J.W.: ‘Quadrature oscillators using operational amplifiers’, J. Act. Passive Electron. Compon., 2011, pp. 14, Article ID 2011.
    20. 20)
      • 7. Sa-Ngiamvibool, W., Jantakun, A.: ‘Quadrature oscillator using CCCCTAs and grounded capacitors with amplitude controllability’, Int. J. Electron., 2014, 101, pp. 17371758.
    21. 21)
      • 8. Li, Y.A.: ‘Derivation of current mode Wien oscillators using CCCCTAs’, Analog Integr. Circuits Signal Process., 2015, 84, pp. 479490.
    22. 22)
      • 5. Herencsar, N., Minaei, S., Koton, J., et al: ‘New resistorless and electronically tunable realization of dual-output VM all-pass filter using VDIBA’, Analog Integr. Circuits Signal Process., 2013, 74, pp. 141154.
    23. 23)
      • 24. Nandi, R., Das, S., Venkateswaran, P.: ‘Floating lossless immittance functions using DVCCTA’, Int. J. Electron. Lett., 2016, 4, pp. 117126.
    24. 24)
      • 3. Pandey, N., Pandey, R.: ‘Approach for third order quadrature oscillator realisation’, IET Circuits Devices Syst., 2015, 9, pp. 161171.
    25. 25)
      • 1. Kumwachara, K., Surakampontorn, W.: ‘An integrable temperature-insensitive gm-RC quadrature oscillator’, Int. J. Electron., 2003, 90, pp. 599605.
    26. 26)
      • 26. Siripongdee, S., Jaikla, W.: ‘Electronically controllable grounded inductance simulators using single commercially available IC:LT1228’, Int. J. Electron. Commun. (AEU), 2017, 76, pp. 110.
    27. 27)
      • 28. Intersil Datasheet: EL2082: ‘Current-mode multiplier’ (Elantec, 2003).
    28. 28)
      • 11. Alpaslan, H.: ‘A modified VDVTA and its applications to floating simulators and a quadrature oscillator’, Microelectron. J., 2016, 51, pp. 114.
    29. 29)
      • 25. Maheshwari, S., Ansari, M.S.: ‘Catalog of realizations for DXCCII using commercially available ICs and applications’, Radioengineering, 2012, 21, pp. 281289.
    30. 30)
      • 37. www.vishay.com/docs/26033/gentechinfofilm.pdf, Accessed (May 2017).
    31. 31)
      • 29. Analog device Datasheet: AD835 and AD534: 250 MHz, 4-quadrant voltage multiplier. file#D00883–0–12/14(E), February 2017.
    32. 32)
      • 35. Gift, S.J.G., Maundy, B.: ‘Versatile composite amplifier configuration’, Int. J. Electron., 2015, 102, pp. 9931006.
    33. 33)
      • 16. Sotner, R., Lahiri, A., Kartci, A., et al: ‘Design of novel precise quadrature oscillators employing ECCIIs with electronic’, Adv. Electron. Comput. Eng., 2013, 13, pp. 6572.
    34. 34)
      • 6. Chen, H.P., Wang, S.F., Hsieh, M.Y.: ‘Tunable current-mode and voltage-mode quadrature oscillator using a DVCCTA’, IEICE Electron. Express, 2014, 11, pp. 16.
    35. 35)
      • 27. Surakampontorn, W., Thitimajshima, P.: ‘Integrable electronically tunable current conveyors’, IEE Proc., 1988, 135, pp. 7177.
    36. 36)
      • 19. Pandey, N., Paul, S. K.: ‘VM and CM universal filters based on single DVCCTA’, J. Act. Passive Electron. Compon., 2011, pp. 17, Article ID-929507.
    37. 37)
      • 21. Jantakun, A., Pisutthipong, N., Siripruchyanun, M.: ‘A synthesis of temperature insensitive/electronically controllable floating simulators based on DV-CCTAs’. Proc. Int. Conf. Electrical Engineering/Electronics, Computer Telecommunication & Information Technology (ECT-ICON), 2009.
    38. 38)
      • 22. Elwan, H.O., Soliman, A.M.: ‘Novel CMOS differential voltage current conveyor and its applications’, IEE Proc. CDS, 1997, 144, pp. 195200.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2017.0251
Loading

Related content

content/journals/10.1049/iet-cds.2017.0251
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading