http://iet.metastore.ingenta.com
1887

Dual frequency MEMS resonator through mixed electrical and mechanical coupling scheme

Dual frequency MEMS resonator through mixed electrical and mechanical coupling scheme

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Miniaturised transceivers are essential in multiband wireless communication systems for higher data rates and low power consumption. Microelectromechanical system (MEMS) resonator filters are actively considered for deployment in transceivers for radio frequency and intermediate frequency (IF) signal filter and oscillator applications. In this study, the authors propose dual frequency capacitive transduced MEMS resonator with two-port electrical configuration. Clamped–clamped beam resonator was selected to serve as a basic resonant tank for the filter concept validation. Five design strategies low loss structural material, array design, mixed electrical and mechanical coupling scheme, sub-micro meter transduction gap and large transduction area were explored. With these strategies, the device achieves dual band filter characteristics, narrow pass band, desired bandwidth, low insertion loss and better stop band rejection. Dual frequency response of the proposed resonator is demonstrated at centre frequencies 400 kHz and 2.57 MHz with a narrow pass band of 3 and 20 kHz, respectively. Low insertion loss of 19.8 and 25.6 dB for frequencies centred at 400 kHz and 2.57 MHz, respectively and stop band rejection >35 dB was achieved. The proposed MEMS resonator may be incorporated in the implementation of dual band pass filter for IF signal filter and dual frequency oscillator applications.

References

    1. 1)
      • J. Basu , T.K. Bhattacharyya .
        1. Basu, J., Bhattacharyya, T.K.: ‘Microelectromechanical resonators for radio frequency communication applications’. Microsyst. Technol., 2011, 17, (10–11), pp. 15571580.
        . Microsyst. Technol. , 1557 - 1580
    2. 2)
      • J. L. Hilbert .
        2. Hilbert, J. L.: ‘RF-MEMS for wireless communications’, IEEE Commun. Mag., 2008, 46, (8), pp. 6874.
        . IEEE Commun. Mag. , 8 , 68 - 74
    3. 3)
      • R.J. Richards , H.J. De Los Santos .
        3. Richards, R.J., De Los Santos, H.J.: ‘MEMS for RF/microwave wireless applications: the next wave Part II’, Microwave J., 2001.
        . Microwave J.
    4. 4)
      • C.T.C. Nguyen , L.P.B. Katehi , G.M. Rebeiz .
        4. Nguyen, C.T.C., Katehi, L.P.B., Rebeiz, G.M.: ‘Micromachined devices for wireless communications (invited)’, Proc. IEEE, 1998, 86, (8), pp. 17561768.
        . Proc. IEEE , 8 , 1756 - 1768
    5. 5)
      • C. T. C. Nguyen .
        5. Nguyen, C. T. C.: ‘RF MEMS for wireless applications’. Conf. Digest, Device Research Conf., Santa Barbara, California, 2002, pp. 912.
        . Conf. Digest, Device Research Conf. , 9 - 12
    6. 6)
      • C. T. C. Nguyen .
        6. Nguyen, C. T. C.: ‘RF MEMS in wireless architectures’. Proc. of the 42nd Annual Design Automation Conf., Anaheim, California, USA, 2005, pp. 416420.
        . Proc. of the 42nd Annual Design Automation Conf. , 416 - 420
    7. 7)
      • L. E. Larson .
        7. Larson, L. E.: ‘Microwave MEMS technology for next-generation wireless communications’. IEEE MTT-S Int. Microwave Symp. Digest, Anaheim, CA, USA, vol. 3, 1999, pp. 10731076.
        . IEEE MTT-S Int. Microwave Symp. Digest , 1073 - 1076
    8. 8)
      • M. Rinaldi , C. Zuo , J. Van der Spiegel .
        8. Rinaldi, M., Zuo, C., Van der Spiegel, J., et al: ‘Reconfigurable CMOS oscillator based on multifrequency AIN contour-mode MEMS resonators’, IEEE Trans. Electron Devices, 2011, 58, (5), pp. 12811286.
        . IEEE Trans. Electron Devices , 5 , 1281 - 1286
    9. 9)
      • A. Gao , S. Gong .
        9. Gao, A., Gong, S.: ‘Harnessing mode conversion for spurious mode suppression in AlN laterally vibrating resonators’, IEEE J. Microelectromech. Syst., 2016, 25, (3), pp. 450458.
        . IEEE J. Microelectromech. Syst. , 3 , 450 - 458
    10. 10)
      • H. Zhang , J. Liang , X. Zhou .
        10. Zhang, H., Liang, J., Zhou, X., et al: ‘Transverse mode spurious resonance suppression in lamb wave mems resonators: theory, modeling, and experiment’, IEEE Trans. Electron Devices, 2015, 62, (9), pp. 30343041.
        . IEEE Trans. Electron Devices , 9 , 3034 - 3041
    11. 11)
      • R. Wang , S.A. Bhave , K. Bhattacharjee .
        11. Wang, R., Bhave, S.A., Bhattacharjee, K.: ‘High kt2×Q multi-frequency lithium niobate resonators’. in IEEE Int. Conf. Micro Electro Mechanical Systems (MEMS), Taipei, Taiwan, 2013.
        . in IEEE Int. Conf. Micro Electro Mechanical Systems (MEMS)
    12. 12)
      • C. T. C. Nguyen .
        12. Nguyen, C. T. C.: ‘Vibrating RF MEMS for low power communications (invited)’. Proc. of MRS Fall Meeting, Boston, Massachusetts, 2002, pp. J12.1.1J2.1.12.
        . Proc. of MRS Fall Meeting , J12.1.1 - J2.1.12
    13. 13)
      • A.C. Wong , C.T.C. Nguyen .
        13. Wong, A.C., Nguyen, C.T.C.: ‘Micromechanical mixer-filters (mixlers)’, J. Microelectromech. Syst., 2004, 13, (1), pp. 100112.
        . J. Microelectromech. Syst. , 1 , 100 - 112
    14. 14)
      • J. Basu , S. Chakraborty , T. K. Bhattacharyya .
        14. Basu, J., Chakraborty, S., Bhattacharyya, T. K.: ‘Micromechanical radial-contour mode disk resonator for a CMOS-MEMS oscillator’. Annual IEEE India Conf. (INDICON), 2010, pp. 14.
        . Annual IEEE India Conf. (INDICON) , 1 - 4
    15. 15)
      • F.D. Bannon , J.R. Clark , C.T.C. Nguyen .
        15. Bannon, F.D., Clark, J.R., Nguyen, C.T.C.: ‘High-Q HF microelectromechanical filters’, IEEE J. Solid-State Circuits, 2000, 35, (4), pp. 512526.
        . IEEE J. Solid-State Circuits , 4 , 512 - 526
    16. 16)
      • S. Lee , C.T.C. Nguyen .
        16. Lee, S., Nguyen, C.T.C.: ‘Mechanically-coupled micromechanical arrays for improved phase noise’. Proc. of IEEE Int. Ultrasonics, Ferroelectrics, and Frequency Control 50th Anniversary Joint Conf., 2004, pp. 280286.
        . Proc. of IEEE Int. Ultrasonics, Ferroelectrics, and Frequency Control 50th Anniversary Joint Conf. , 280 - 286
    17. 17)
      • M. Demirci , C.T.C. Nguyen .
        17. Demirci, M., Nguyen, C.T.C.: ‘Mechanically corner-coupled square microresonator array for reduced series motional resistance’, J. Microelectromech. Syst., 2006, 15, (6), pp. 14191436.
        . J. Microelectromech. Syst. , 6 , 1419 - 1436
    18. 18)
      • F. Casset , C. Durandl , S. Dedieu .
        18. Casset, F., Durandl, C., Dedieu, S., et al: ‘3D multi-frequency MEMS electromechanical resonator design’. IEEE 10th Int. Conf. Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems, Delft, 2009, pp. 15.
        . IEEE 10th Int. Conf. Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems , 1 - 5
    19. 19)
      • M. Riverola , G. Sobreviela , F. Torres .
        19. Riverola, M., Sobreviela, G., Torres, F., et al: ‘Single-resonator dual-frequency BEOL-embedded CMOS-MEMS oscillator with low-power and ultra-compact TIA core’, IEEE Electron Device Lett., 2017, 38, (2), pp. 273276.
        . IEEE Electron Device Lett. , 2 , 273 - 276
    20. 20)
      • D. Paci , M. Mastrangeli , A. Nannini .
        20. Paci, D., Mastrangeli, M., Nannini, A., et al: ‘Modeling and characterization of three kinds of MEMS resonators fabricated with a thick polysilicon technology’, Analog Integr. Circuits Signal Process., 2006, 48, pp. 4147.
        . Analog Integr. Circuits Signal Process. , 41 - 47
    21. 21)
      • M.-H. Li , W.-C. Chen , S.S. Li .
        21. Li, M.-H., Chen, W.-C., Li, S.S.: ‘Mechanically coupled CMOS-MEMS free-free beam resonator arrays with enhanced power handling capability’, IEEE Trans. Ultrason. Ferroelectr. Frequency Control, 2012, 59, (3), pp. 346357.
        . IEEE Trans. Ultrason. Ferroelectr. Frequency Control , 3 , 346 - 357
    22. 22)
      • G. Casinovi , X. Gao , F. Ayazi .
        22. Casinovi, G., Gao, X., Ayazi, F.: ‘Lamb waves and resonant modes in rectangular-bar silicon resonators’, J. Microelectromech. Syst., 2010, 19, (4), pp. 827839.
        . J. Microelectromech. Syst. , 4 , 827 - 839
    23. 23)
      • C.-Y. Chen , M.-H. Li , C.-H. Chin .
        23. Chen, C.-Y., Li, M.-H., Chin, C.-H., et al: ‘Implementation of a CMOS- MEMS filter through a mixed electrical and mechanical coupling scheme’, J. Microelectromech. Syst., 2016, 25, (2), pp. 262274.
        . J. Microelectromech. Syst. , 2 , 262 - 274
    24. 24)
      • B.K. Hammad .
        24. Hammad, B.K.: ‘Natural frequencies and mode shapes of mechanically coupled microbeam resonators with an application to micromechanical filters’, Hindawi J. Shock Vib., 2014.
        . Hindawi J. Shock Vib.
    25. 25)
      • M. Riverola , G. Sobreviela , A. Uranga .
        25. Riverola, M., Sobreviela, G., Uranga, A., et al: ‘Intrinsic feed through current cancellation in a seesaw CMOS-MEMS resonator for integrated oscillators’. IEEE Int. Frequency Control Symp., 2016, pp. 14.
        . IEEE Int. Frequency Control Symp. , 1 - 4
    26. 26)
      • K. Wang , Y. Yu , A. C. Wong .
        26. Wang, K., Yu, Y., Wong, A. C., et al: ‘VHF free free beam high Q micromechanical resonator’. 12th IEEE Int. Micro Electro Mechanical Conf., Florida, 1999, pp. 453458.
        . 12th IEEE Int. Micro Electro Mechanical Conf. , 453 - 458
    27. 27)
      • J. Giner , A. Uranga , F. Torres .
        27. Giner, J., Uranga, A., Torres, F., et al: ‘Fully CMOS integrated bandpass filter based on mechanical coupling of two RF MEMS resonators’, IEEE Electron. Lett., 2010, 46, (9), pp. 640641.
        . IEEE Electron. Lett. , 9 , 640 - 641
    28. 28)
      • A.B. Amar , D. Bahloul , F. Gagnon .
        28. Amar, A.B., Bahloul, D., Gagnon, F., et al: ‘MEMS filter's design and modeling based on width-extensional mode plate resonator for wireless applications’, Microsyst. Technol., 2015, 21, pp. 15671576.
        . Microsyst. Technol. , 1567 - 1576
    29. 29)
      • J.L. Lopez , J. Verd , A. Uranga .
        29. Lopez, J.L., Verd, J., Uranga, A., et al: ‘A CMOS–MEMS RF-tunable bandpass filter based on two high-Q 22-MHz polysilicon clamped-clamped beam resonators’, IEEE Electron Device Lett., 2009, 30, (7), pp. 718720.
        . IEEE Electron Device Lett. , 7 , 718 - 720
    30. 30)
      • H.M. Ouakad .
        30. Ouakad, H.M.: ‘An electrostatically actuated MEMS arch band-pass filter’, Hindawi J. Shock Vib., 2013, 30, (20), pp. 809819.
        . Hindawi J. Shock Vib. , 20 , 809 - 819
    31. 31)
      • B.K. Hammad , E.M. Abdel Rahman , A.H. Nayfeh .
        31. Hammad, B.K., Abdel Rahman, E.M., Nayfeh, A.H.: ‘Modeling and analysis of electrostatic MEMS filters’,  J. Nonlinear Dyn., 2010, 60, pp. 385401.
        .  J. Nonlinear Dyn. , 385 - 401
    32. 32)
      • H.M. Ouakad , A.H. Nayfeh , S. Choura .
        32. Ouakad, H.M., Nayfeh, A.H., Choura, S., et al: ‘Nonlinear feedback controller of a microbeam resonator’, J. Vib. Control, 2013, 21, (9), pp. 16801697.
        . J. Vib. Control , 9 , 1680 - 1697
    33. 33)
      • H.M. Ouakad , A.H. Nayfeh , S. Choura .
        33. Ouakad, H.M., Nayfeh, A.H., Choura, S., et al: ‘Nonlinear feedback control and dynamics of an electrostatically actuated microbeam filter’. Proc. of ASME Int. Mechanical Engineering Congress and Exposition, Boston, USA, 2008.
        . Proc. of ASME Int. Mechanical Engineering Congress and Exposition
    34. 34)
      • M.-H. Li , C.-Y. Chen , C.-S. Li .
        34. Li, M.-H., Chen, C.-Y., Li, C.-S., et al: ‘Design and characterization of a dual-mode CMOS-MEMS resonator for TCF manipulation’, IEEE J. Microelectromech. Syst., 2015, 24, (2), pp. 446457.
        . IEEE J. Microelectromech. Syst. , 2 , 446 - 457
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2017.0250
Loading

Related content

content/journals/10.1049/iet-cds.2017.0250
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address