access icon free RC oscillators based on high-Q frequency-selecting network

In this study, a traditional voltage-mode oscillator consisting of a high-Q band-pass filter and a voltage amplifier is transformed into a current-mode oscillator employing a trans-conductance amplifier. Furthermore, a current-mode quadrature oscillator with a high-Q band-pass filter and second generation current-controlled conveyors (CCCIIs) is presented. Since the loop of the oscillator has rich selectivity, the oscillator produces less distortion. Also, the 3 dB bandwidth, oscillation criterion, and oscillation frequency of the oscillator could independently, linearly, and electronically be tuned by the aid of adjusting bias currents of the CCCIIs. Finally, the validity of the designed circuit is verified by means of the computer simulation and the non-ideal analysis is performed to explain the results of the simulation. The results show that the designed circuit is workable.

Inspec keywords: Q-factor; amplifiers; current conveyors; band-pass filters; oscillators

Other keywords: second generation current-controlled conveyors; current-mode quadrature oscillator; computer simulation; current-mode oscillator; voltage-mode oscillator; CCCII; oscillation frequency; voltage amplifier; RC oscillators; bias currents; oscillation criterion; high-Q frequency-selecting network; transconductance amplifier; high-Q band-pass filter

Subjects: Oscillators; Amplifiers; Active filters and other active networks

References

    1. 1)
      • 28. Pandey, N., Paul, S.K.: ‘A novel electronically tunable sinusoidal oscillator based on CCCII (-IR)’, J. Act. Passive Electron. Devices, 2008, 3, (2008), pp. 135141.
    2. 2)
      • 37. Li, Y.A.: ‘A novel current-Mode multiphase sinusoidal oscillator using MO-CDTAs’, Int. J. Electron., 2012, 99, (4), pp. 477489.
    3. 3)
      • 12. Bhaskar, D.R., Prasad, D., Senani, R., et al: ‘New fully-uncoupled current-controlled sinusoidal oscillator employing grounded capacitors’, Am. J. Electr. Electron. Eng., 2016, 4, (3), pp. 8184.
    4. 4)
      • 9. Göknar, C., Yıldız, M., Minaei, S.: ‘Metamutator applications: a quadrature MOS only oscillator and transconductance/transimpedance amplifiers’, Analog Integr. Circuits Signal Process., 2016, 89, (3), pp. 801808.
    5. 5)
      • 38. Li, Y.A.: ‘Electronically tunable current-mode biquadratic filter and four-phase quadrature oscillator’, Microelectr. J., 2014, 45, (3), pp. 330335.
    6. 6)
      • 24. Skotis, G.D., Psychalinos, C.: ‘Multiphase sinusoidal oscillators using second generation current conveyors’, AEU Int. J. Electron. Commun., 2010, 64, (12), pp. 11781181.
    7. 7)
      • 19. Maheshwari, S.: ‘Current-mode third-order quadrature oscillator’, IET Circuits Devices Syst., 2010, 4, (3), pp. 188195.
    8. 8)
      • 25. Ranjan, A., Ghosh, M., Paul, S.K.: ‘Third-order voltage-mode active-C band pass filter’, Int. J. Electron., 2015, 102, (5), pp. 781791.
    9. 9)
      • 2. Siripruchyanun, M., Jaikla, W.: ‘Current controlled current conveyor transconductance amplifier (CCCCTA): a building block for analog signal processing’, Electr. Eng., 2008, 90, (6), pp. 443453.
    10. 10)
      • 14. Kiranon, W., Kesorn, J., Sangpisit, W., et al: ‘Electronically tunable multifunctional translinear-C filter and oscillator’, Electron. Lett., 1997, 33, (7), pp. 573574.
    11. 11)
      • 6. Siripruchyanun, M., Jaikla, W.: ‘CMOS current-controlled current differencing transconductance amplifier and applications to analog signal processing’, AEU Int. J. Electron. Commun., 2008, 62, (4), pp. 277287.
    12. 12)
      • 15. Abuelma'atti, M.T., Tasadduq, N.A.: ‘A novel current controlled oscillator using translinear current conveyors’, Frequenz, 1998, 52, (5–6), pp. 123124.
    13. 13)
      • 35. Li, Y.A.: ‘Systematic derivation for quadrature oscillators using CCCCTAs’, Radioengineering, 2015, 24, (2), pp. 535543.
    14. 14)
      • 29. Sharma, R.K., Arora, T.S., Senani, R.: ‘On the realisation of canonic single-resistance-controlled oscillators using third generation current conveyors’, IET Circuits Devices Syst., 2017, 11, (1), pp. 1020.
    15. 15)
      • 31. Türköz, S., Minaei, S.: ‘A new current-controlled sinusoidal oscillator using the current controlled conveyor’, Frequenz, 2000, 54, (5–6), pp. 132133.
    16. 16)
      • 8. Sagbas, M., Herencsar, N., Minaei, S., et al: ‘Current and voltage mode multiphase sinusoidal oscillators using CBTAs’, Radioengineering, 2013, 22, (1), pp. 2433.
    17. 17)
      • 22. Li, Y.A.: ‘Systematic synthesis of high-Q T-T filters employing CCCIIs’, J. Circuits Syst. Comput., 2017, 26, (6), p. 1750088.
    18. 18)
      • 17. Horng, J.W.: ‘A sinusoidal oscillator using current-controlled current conveyors’, Int. J. Electron., 2001, 88, (6), pp. 659664.
    19. 19)
      • 23. Yasin, M.Y., Gopal, B.: ‘High frequency oscillator design using a single 45 nm CMOS current controlled current conveyor (CCCII+) with minimum passive components’, Circuits Syst., 2011, 2, (2), pp. 5359.
    20. 20)
      • 11. Safari, L., Minaei, S.: ‘A low-voltage low-power resistor-based current mirror and its applications’, J. Circuits Syst. Comput., 2017, 26, (11), p. 1750180.
    21. 21)
      • 27. Fani, R., Farshidi, E.: ‘New systematic two-graph-based approach of active filters employing multiple output current controlled conveyors’, IET Circuits Devices Syst., 2013, 7, (6), pp. 326336.
    22. 22)
      • 33. Budak, A.: ‘Passive and active network analysis and synthesis’ (Waveland Press Inc., 1991), pp. 459483.
    23. 23)
      • 30. Yuce, E., Minaei, S., Cicekoglu, O.: ‘Resistorless floating immittance function simulators employing current controlled conveyors and a grounded capacitor’, Electr. Eng., 2006, 88, (6), pp. 519525.
    24. 24)
      • 13. Bhaskar, D.R., Gupta, S.S., Senani, R., et al: ‘New CFOA-based sinusoidal oscillators retaining independent control of oscillation frequency even under the influence of parasitic impedances’, Analog Integr. Circuits Signal Process., 2012, 73, (1), pp. 427437.
    25. 25)
      • 39. Biolek, D., Lahiri, A., Jaikla, W., et al: ‘Realization of electronically tunable voltage-mode/current-mode quadrature sinusoidal oscillator using ZC-CG-CDBA’, Microelectr. J., 2011, 42, (10), pp. 11161123.
    26. 26)
      • 5. Siripruchyanun, M., Jaikla, W.: ‘Cascadable current-mode biquad filter and quadrature oscillator using DO-CCCIIs and OTA’, Circuits Syst. Signal Process., 2009, 28, (21), pp. 99110.
    27. 27)
      • 34. Li, Y.A.: ‘A new single MCCCDTA based Wien-bridge oscillator with AGC’, AEU Int. J. Electron. Commun., 2012, 66, (2), pp. 153156.
    28. 28)
      • 32. Ibrahim, M.A., Minaei, S., Yuce, E.: ‘All-Pass sections with high gain opportunity’, Radioengineering, 2011, 20, (1), pp. 39.
    29. 29)
      • 42. Sotner, R., Jerabek, J., Herencsar, N., et al: ‘Linearly tunable quadrature oscillator derived from LC colpitts structure using voltage differencing transconductance amplifier and adjustable current amplifier’, Analog Integr. Circuits Signal Process., 2014, 81, (1), pp. 121136.
    30. 30)
      • 36. Li, Y.A.: ‘Derivation for current-mode Wien oscillators using CCCCTAs’, Analog Integr. Circuits Signal Process., 2015, 84, (3), pp. 479490.
    31. 31)
      • 41. Jerabek, J., Sotner, R., Vrba, K.: ‘Tunable multiphase oscillator using diamond transistors with voltage controlled condition of oscillation for amplitude stabilization’, Elektron. Elektrotech., 2014, 20, (1), pp. 4548.
    32. 32)
      • 7. Li, Y.A.: ‘Modeling, synthesis, analysis, and simulation of CCCⅡ-based floating gyrators’, Analog Integr. Circuits Signal Process., 2016, 88, (3), pp. 443453.
    33. 33)
      • 10. Minaei, S, Cicekoglu, O.: ‘New current-mode integrator and all-pass section without external passive elements and their application to design a dual-mode quadrature oscillator’, Frequenz, 2003, 57, (1–2), pp. 1924.
    34. 34)
      • 21. Senani, R., Bhaskar, D.R., Singh, A.K.: ‘Sinusoidal oscillators and waveform generators using modern electronic circuit building blocks’ (Springer International Publishing, Switzerland, 2016), Ch. 8, pp. 395425.
    35. 35)
      • 3. Li, Y.A.: ‘NAM expansion method for systematic synthesis of floating gyrators using CCCCTAs’, Analog Integr. Circuits Signal Process., 2015, 82, (3), pp. 733743.
    36. 36)
      • 20. Senani, R., Bhaskar, D.R., Singh, A.K.: ‘Current conveyors: variants, applications and hardware implementations’ (Springer International Publishing, Switzerland, 2015), Ch. 8, pp. 395423.
    37. 37)
      • 1. Fabre, A., Saaid, O., Wiest, F., et al: ‘High frequency applications based on a new current controlled conveyor’, IEEE Trans. Circuits Syst. I., Fundam. Theory Appl., 1996, 43, (2), pp. 8291.
    38. 38)
      • 4. Summart, S., Thongsopa, C., Jaikla, W.: ‘OTA based current-mode sinusoidal quadrature oscillator with non-interactive control’, Prz. Elektrotech., 2012, 88, (7a), pp. 1418.
    39. 39)
      • 16. Abuelma'atti, M.T., Al-Qahtani, M.A.: ‘A new current controlled multiphase sinusoidal oscillator using two translinear conveyors’, IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., 1998, 45, (7), pp. 881885.
    40. 40)
      • 40. Herencsar, N., Sotner, R., Koton, J., et al: ‘New compact VM four-phase oscillator employing only single z-copy VDTA and all grounded passive elements’, Elektron. Elektrotech., 2013, 19, (10), pp. 8790.
    41. 41)
      • 18. Fongsamut, C., Anuntahirunrat, K., Kumwachara, K., et al: ‘Current-conveyor-based single-element-controlled and current-controlled sinusoidal oscillators’, Int. J. Electron., 2006, 93, (7), pp. 467478.
    42. 42)
      • 26. Kumngern, M., Jongchanachavawat, W., Dejhan, K.: ‘New electronically tunable current-mode universal biquad filter using translinear current conveyors’, Int. J. Electron., 2010, 97, (5), pp. 511523.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2017.0232
Loading

Related content

content/journals/10.1049/iet-cds.2017.0232
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading