http://iet.metastore.ingenta.com
1887

RC oscillators based on high-Q frequency-selecting network

RC oscillators based on high-Q frequency-selecting network

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, a traditional voltage-mode oscillator consisting of a high-Q band-pass filter and a voltage amplifier is transformed into a current-mode oscillator employing a trans-conductance amplifier. Furthermore, a current-mode quadrature oscillator with a high-Q band-pass filter and second generation current-controlled conveyors (CCCIIs) is presented. Since the loop of the oscillator has rich selectivity, the oscillator produces less distortion. Also, the 3 dB bandwidth, oscillation criterion, and oscillation frequency of the oscillator could independently, linearly, and electronically be tuned by the aid of adjusting bias currents of the CCCIIs. Finally, the validity of the designed circuit is verified by means of the computer simulation and the non-ideal analysis is performed to explain the results of the simulation. The results show that the designed circuit is workable.

References

    1. 1)
      • A. Fabre , O. Saaid , F. Wiest .
        1. Fabre, A., Saaid, O., Wiest, F., et al: ‘High frequency applications based on a new current controlled conveyor’, IEEE Trans. Circuits Syst. I., Fundam. Theory Appl., 1996, 43, (2), pp. 8291.
        . IEEE Trans. Circuits Syst. I., Fundam. Theory Appl. , 2 , 82 - 91
    2. 2)
      • M. Siripruchyanun , W. Jaikla .
        2. Siripruchyanun, M., Jaikla, W.: ‘Current controlled current conveyor transconductance amplifier (CCCCTA): a building block for analog signal processing’, Electr. Eng., 2008, 90, (6), pp. 443453.
        . Electr. Eng. , 6 , 443 - 453
    3. 3)
      • Y.A. Li .
        3. Li, Y.A.: ‘NAM expansion method for systematic synthesis of floating gyrators using CCCCTAs’, Analog Integr. Circuits Signal Process., 2015, 82, (3), pp. 733743.
        . Analog Integr. Circuits Signal Process. , 3 , 733 - 743
    4. 4)
      • S. Summart , C. Thongsopa , W. Jaikla .
        4. Summart, S., Thongsopa, C., Jaikla, W.: ‘OTA based current-mode sinusoidal quadrature oscillator with non-interactive control’, Prz. Elektrotech., 2012, 88, (7a), pp. 1418.
        . Prz. Elektrotech. , 14 - 18
    5. 5)
      • M. Siripruchyanun , W. Jaikla .
        5. Siripruchyanun, M., Jaikla, W.: ‘Cascadable current-mode biquad filter and quadrature oscillator using DO-CCCIIs and OTA’, Circuits Syst. Signal Process., 2009, 28, (21), pp. 99110.
        . Circuits Syst. Signal Process. , 21 , 99 - 110
    6. 6)
      • M. Siripruchyanun , W. Jaikla .
        6. Siripruchyanun, M., Jaikla, W.: ‘CMOS current-controlled current differencing transconductance amplifier and applications to analog signal processing’, AEU Int. J. Electron. Commun., 2008, 62, (4), pp. 277287.
        . AEU Int. J. Electron. Commun. , 4 , 277 - 287
    7. 7)
      • Y.A. Li .
        7. Li, Y.A.: ‘Modeling, synthesis, analysis, and simulation of CCCⅡ-based floating gyrators’, Analog Integr. Circuits Signal Process., 2016, 88, (3), pp. 443453.
        . Analog Integr. Circuits Signal Process. , 3 , 443 - 453
    8. 8)
      • M. Sagbas , N. Herencsar , S. Minaei .
        8. Sagbas, M., Herencsar, N., Minaei, S., et al: ‘Current and voltage mode multiphase sinusoidal oscillators using CBTAs’, Radioengineering, 2013, 22, (1), pp. 2433.
        . Radioengineering , 1 , 24 - 33
    9. 9)
      • C. Göknar , M. Yıldız , S. Minaei .
        9. Göknar, C., Yıldız, M., Minaei, S.: ‘Metamutator applications: a quadrature MOS only oscillator and transconductance/transimpedance amplifiers’, Analog Integr. Circuits Signal Process., 2016, 89, (3), pp. 801808.
        . Analog Integr. Circuits Signal Process. , 3 , 801 - 808
    10. 10)
      • S Minaei , O. Cicekoglu .
        10. Minaei, S, Cicekoglu, O.: ‘New current-mode integrator and all-pass section without external passive elements and their application to design a dual-mode quadrature oscillator’, Frequenz, 2003, 57, (1–2), pp. 1924.
        . Frequenz , 19 - 24
    11. 11)
      • L. Safari , S. Minaei .
        11. Safari, L., Minaei, S.: ‘A low-voltage low-power resistor-based current mirror and its applications’, J. Circuits Syst. Comput., 2017, 26, (11), p. 1750180.
        . J. Circuits Syst. Comput. , 11 , 1750180
    12. 12)
      • D.R. Bhaskar , D. Prasad , R. Senani .
        12. Bhaskar, D.R., Prasad, D., Senani, R., et al: ‘New fully-uncoupled current-controlled sinusoidal oscillator employing grounded capacitors’, Am. J. Electr. Electron. Eng., 2016, 4, (3), pp. 8184.
        . Am. J. Electr. Electron. Eng. , 3 , 81 - 84
    13. 13)
      • D.R. Bhaskar , S.S. Gupta , R. Senani .
        13. Bhaskar, D.R., Gupta, S.S., Senani, R., et al: ‘New CFOA-based sinusoidal oscillators retaining independent control of oscillation frequency even under the influence of parasitic impedances’, Analog Integr. Circuits Signal Process., 2012, 73, (1), pp. 427437.
        . Analog Integr. Circuits Signal Process. , 1 , 427 - 437
    14. 14)
      • W. Kiranon , J. Kesorn , W. Sangpisit .
        14. Kiranon, W., Kesorn, J., Sangpisit, W., et al: ‘Electronically tunable multifunctional translinear-C filter and oscillator’, Electron. Lett., 1997, 33, (7), pp. 573574.
        . Electron. Lett. , 7 , 573 - 574
    15. 15)
      • M.T. Abuelma'atti , N.A. Tasadduq .
        15. Abuelma'atti, M.T., Tasadduq, N.A.: ‘A novel current controlled oscillator using translinear current conveyors’, Frequenz, 1998, 52, (5–6), pp. 123124.
        . Frequenz , 123 - 124
    16. 16)
      • M.T. Abuelma'atti , M.A. Al-Qahtani .
        16. Abuelma'atti, M.T., Al-Qahtani, M.A.: ‘A new current controlled multiphase sinusoidal oscillator using two translinear conveyors’, IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., 1998, 45, (7), pp. 881885.
        . IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. , 7 , 881 - 885
    17. 17)
      • J.W. Horng .
        17. Horng, J.W.: ‘A sinusoidal oscillator using current-controlled current conveyors’, Int. J. Electron., 2001, 88, (6), pp. 659664.
        . Int. J. Electron. , 6 , 659 - 664
    18. 18)
      • C. Fongsamut , K. Anuntahirunrat , K. Kumwachara .
        18. Fongsamut, C., Anuntahirunrat, K., Kumwachara, K., et al: ‘Current-conveyor-based single-element-controlled and current-controlled sinusoidal oscillators’, Int. J. Electron., 2006, 93, (7), pp. 467478.
        . Int. J. Electron. , 7 , 467 - 478
    19. 19)
      • S. Maheshwari .
        19. Maheshwari, S.: ‘Current-mode third-order quadrature oscillator’, IET Circuits Devices Syst., 2010, 4, (3), pp. 188195.
        . IET Circuits Devices Syst. , 3 , 188 - 195
    20. 20)
      • R. Senani , D.R. Bhaskar , A.K. Singh . (2015)
        20. Senani, R., Bhaskar, D.R., Singh, A.K.: ‘Current conveyors: variants, applications and hardware implementations’ (Springer International Publishing, Switzerland, 2015), Ch. 8, pp. 395423.
        .
    21. 21)
      • R. Senani , D.R. Bhaskar , A.K. Singh . (2016)
        21. Senani, R., Bhaskar, D.R., Singh, A.K.: ‘Sinusoidal oscillators and waveform generators using modern electronic circuit building blocks’ (Springer International Publishing, Switzerland, 2016), Ch. 8, pp. 395425.
        .
    22. 22)
      • Y.A. Li .
        22. Li, Y.A.: ‘Systematic synthesis of high-Q T-T filters employing CCCIIs’, J. Circuits Syst. Comput., 2017, 26, (6), p. 1750088.
        . J. Circuits Syst. Comput. , 6 , 1750088
    23. 23)
      • M.Y. Yasin , B. Gopal .
        23. Yasin, M.Y., Gopal, B.: ‘High frequency oscillator design using a single 45 nm CMOS current controlled current conveyor (CCCII+) with minimum passive components’, Circuits Syst., 2011, 2, (2), pp. 5359.
        . Circuits Syst. , 2 , 53 - 59
    24. 24)
      • G.D. Skotis , C. Psychalinos .
        24. Skotis, G.D., Psychalinos, C.: ‘Multiphase sinusoidal oscillators using second generation current conveyors’, AEU Int. J. Electron. Commun., 2010, 64, (12), pp. 11781181.
        . AEU Int. J. Electron. Commun. , 12 , 1178 - 1181
    25. 25)
      • A. Ranjan , M. Ghosh , S.K. Paul .
        25. Ranjan, A., Ghosh, M., Paul, S.K.: ‘Third-order voltage-mode active-C band pass filter’, Int. J. Electron., 2015, 102, (5), pp. 781791.
        . Int. J. Electron. , 5 , 781 - 791
    26. 26)
      • M. Kumngern , W. Jongchanachavawat , K. Dejhan .
        26. Kumngern, M., Jongchanachavawat, W., Dejhan, K.: ‘New electronically tunable current-mode universal biquad filter using translinear current conveyors’, Int. J. Electron., 2010, 97, (5), pp. 511523.
        . Int. J. Electron. , 5 , 511 - 523
    27. 27)
      • R. Fani , E. Farshidi .
        27. Fani, R., Farshidi, E.: ‘New systematic two-graph-based approach of active filters employing multiple output current controlled conveyors’, IET Circuits Devices Syst., 2013, 7, (6), pp. 326336.
        . IET Circuits Devices Syst. , 6 , 326 - 336
    28. 28)
      • N. Pandey , S.K. Paul .
        28. Pandey, N., Paul, S.K.: ‘A novel electronically tunable sinusoidal oscillator based on CCCII (-IR)’, J. Act. Passive Electron. Devices, 2008, 3, (2008), pp. 135141.
        . J. Act. Passive Electron. Devices , 2008 , 135 - 141
    29. 29)
      • R.K. Sharma , T.S. Arora , R. Senani .
        29. Sharma, R.K., Arora, T.S., Senani, R.: ‘On the realisation of canonic single-resistance-controlled oscillators using third generation current conveyors’, IET Circuits Devices Syst., 2017, 11, (1), pp. 1020.
        . IET Circuits Devices Syst. , 1 , 10 - 20
    30. 30)
      • E. Yuce , S. Minaei , O. Cicekoglu .
        30. Yuce, E., Minaei, S., Cicekoglu, O.: ‘Resistorless floating immittance function simulators employing current controlled conveyors and a grounded capacitor’, Electr. Eng., 2006, 88, (6), pp. 519525.
        . Electr. Eng. , 6 , 519 - 525
    31. 31)
      • S. Türköz , S. Minaei .
        31. Türköz, S., Minaei, S.: ‘A new current-controlled sinusoidal oscillator using the current controlled conveyor’, Frequenz, 2000, 54, (5–6), pp. 132133.
        . Frequenz , 132 - 133
    32. 32)
      • M.A. Ibrahim , S. Minaei , E. Yuce .
        32. Ibrahim, M.A., Minaei, S., Yuce, E.: ‘All-Pass sections with high gain opportunity’, Radioengineering, 2011, 20, (1), pp. 39.
        . Radioengineering , 1 , 3 - 9
    33. 33)
      • A. Budak . (1991)
        33. Budak, A.: ‘Passive and active network analysis and synthesis’ (Waveland Press Inc., 1991), pp. 459483.
        .
    34. 34)
      • Y.A. Li .
        34. Li, Y.A.: ‘A new single MCCCDTA based Wien-bridge oscillator with AGC’, AEU Int. J. Electron. Commun., 2012, 66, (2), pp. 153156.
        . AEU Int. J. Electron. Commun. , 2 , 153 - 156
    35. 35)
      • Y.A. Li .
        35. Li, Y.A.: ‘Systematic derivation for quadrature oscillators using CCCCTAs’, Radioengineering, 2015, 24, (2), pp. 535543.
        . Radioengineering , 2 , 535 - 543
    36. 36)
      • Y.A. Li .
        36. Li, Y.A.: ‘Derivation for current-mode Wien oscillators using CCCCTAs’, Analog Integr. Circuits Signal Process., 2015, 84, (3), pp. 479490.
        . Analog Integr. Circuits Signal Process. , 3 , 479 - 490
    37. 37)
      • Y.A. Li .
        37. Li, Y.A.: ‘A novel current-Mode multiphase sinusoidal oscillator using MO-CDTAs’, Int. J. Electron., 2012, 99, (4), pp. 477489.
        . Int. J. Electron. , 4 , 477 - 489
    38. 38)
      • Y.A. Li .
        38. Li, Y.A.: ‘Electronically tunable current-mode biquadratic filter and four-phase quadrature oscillator’, Microelectr. J., 2014, 45, (3), pp. 330335.
        . Microelectr. J. , 3 , 330 - 335
    39. 39)
      • D. Biolek , A. Lahiri , W. Jaikla .
        39. Biolek, D., Lahiri, A., Jaikla, W., et al: ‘Realization of electronically tunable voltage-mode/current-mode quadrature sinusoidal oscillator using ZC-CG-CDBA’, Microelectr. J., 2011, 42, (10), pp. 11161123.
        . Microelectr. J. , 10 , 1116 - 1123
    40. 40)
      • N. Herencsar , R. Sotner , J. Koton .
        40. Herencsar, N., Sotner, R., Koton, J., et al: ‘New compact VM four-phase oscillator employing only single z-copy VDTA and all grounded passive elements’, Elektron. Elektrotech., 2013, 19, (10), pp. 8790.
        . Elektron. Elektrotech. , 10 , 87 - 90
    41. 41)
      • J. Jerabek , R. Sotner , K. Vrba .
        41. Jerabek, J., Sotner, R., Vrba, K.: ‘Tunable multiphase oscillator using diamond transistors with voltage controlled condition of oscillation for amplitude stabilization’, Elektron. Elektrotech., 2014, 20, (1), pp. 4548.
        . Elektron. Elektrotech. , 1 , 45 - 48
    42. 42)
      • R. Sotner , J. Jerabek , N. Herencsar .
        42. Sotner, R., Jerabek, J., Herencsar, N., et al: ‘Linearly tunable quadrature oscillator derived from LC colpitts structure using voltage differencing transconductance amplifier and adjustable current amplifier’, Analog Integr. Circuits Signal Process., 2014, 81, (1), pp. 121136.
        . Analog Integr. Circuits Signal Process. , 1 , 121 - 136
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2017.0232
Loading

Related content

content/journals/10.1049/iet-cds.2017.0232
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address