access icon free Analysis and design of single phase power factor correction with DC–DC SEPIC Converter for fast dynamic response using genetic algorithm optimised PI controller

This study presents the analysis and design of a single phase power factor correction (PFC) scheme using a DC–DC single ended primary inductance converter with genetic algorithm (GA)-tuned proportional integral (PI) controllers. A systematic off-line design approach using GA for optimising the parameters of the PI controller is proposed and the performance is compared with the conventional Z–N tuned PI controller. The steady-state and transient responses of the converter subjected to a change in the load, set point and line variations are investigated. The performance analysis of the proposed converter in continuous conduction mode is made for the above-mentioned methods using Matlab/Simulink-based simulation studies and experimental set up. Results reveal that the GA-tuned PI controller yields superior performance to the Z–N tuned PI controller in terms of power factor, percentage total harmonic distortion, regulated output voltage for the variations in line, load and efficient tracking of output voltage for a change in the reference voltage.

Inspec keywords: dynamic response; PI control; genetic algorithms; harmonic distortion; voltage control; power factor correction; DC-DC power convertors

Other keywords: GA-tuned PI controller; regulated output voltage; single phase power factor correction; DC–DC SEPIC; reference voltage; optimised PI controller; single ended primary inductance converter; total harmonic distortion; transient response; Matlab-Simulink-based simulation; dynamic response; continuous conduction mode; genetic algorithm; steady-state response; proportional integral controllers

Subjects: Optimisation techniques; Control of electric power systems; DC-DC power convertors; Optimisation techniques; Voltage control; Power electronics, supply and supervisory circuits

References

    1. 1)
      • 11. Poorali, B., Adib, E.: ‘Analysis of the integrated SEPIC-flyback converter as a single-stage single-switch power-factor-correction LED driver’, IEEE Trans. Ind. Electron., 2016, 63, (6), pp. 35623569.
    2. 2)
      • 14. Davoudi, A., Jatskevich, J., Patrick, L., et al: ‘Multi-resolution modeling of power electronics circuits using model-order reduction techniques’, IEEE Trans. Circuits Syst., 2013, 60, (3), pp. 810823.
    3. 3)
      • 13. Melo, P.F., Gules, R., Ribeiro, E.F., et al: ‘A modified SEPIC converter for high-power-factor rectifier and universal input voltage applications’, IEEE Trans. Power Electron., 2010, 25, (2), pp. 310321.
    4. 4)
      • 25. Kanaan, H.Y., Hayek, A., Al-Haddad, K.: ‘A new single-phase power factor corrector based on the SEPIC and sheppard-taylor topologies’. IEEE 29th Int. Telecommunications Energy Conf., 2007, pp. 840847.
    5. 5)
      • 2. Memon, A.H., Yao, K., Chen, Q., et al: ‘Variable-on-time control to achieve high input power factor for a CRM-integrated buck–flyback PFC converter’, IEEE Trans. Power Electron., 2017, 32, (7).
    6. 6)
      • 17. Umamaheswari, M.G., Uma, G., Redlinevijitha, S.: ‘Comparison of hysteresis control and reduced order linear quadratic regulator control for power factor correction using DC–DC Cuk converters’, J. Circuits Syst. Comput., 2012, 21, (1), p. 1250002 (18 pages).
    7. 7)
      • 15. Umamaheswari, M.G., Uma, G., Vijayalakshmi, M.: ‘Design and implementation of reduced-order sliding mode controller for higher-order power factor correction converters’, IET Power Electron., 2011, 4, (9), pp. 984992.
    8. 8)
      • 4. Poorali, B., Adib, E., Farzanehfard, H.: ‘A single-stage single-switch soft-switching power-factor-correction LED driver’, IEEE Trans. Power Electron., 2017, 32, (10), pp. 79327940.
    9. 9)
      • 7. Pereira, G.G., Dalla Costa, M.A., Alonso, J.M., et al: ‘LED driver based on input current shaper without electrolytic capacitor’, IEEE Trans. Ind. Electron., 2017, 64, (6), pp. 45204528.
    10. 10)
      • 9. Ranganathan, G., Umanand, L.: ‘Power factor improvement using DCM Cuk converter with coupled inductor’, IET Electronics Power Appl., 1999, 146, (2), pp. 231236.
    11. 11)
      • 23. Sahid, M.R., Yatim, A.H.M., Taufik, T.: ‘A new AC–DC converter using bridgeless SEPIC’. IECON 2010 – 36th Annual Conf. on IEEE Industrial Electronics Society, 2010, pp. 286290.
    12. 12)
      • 29. Gu, W., Zhang, D.: ‘Designing a SEPIC converter’, Excellent Design Guidelines, National Semiconductor in Application Note, April 2008, pp. 16.
    13. 13)
      • 20. Huber, L., Kumar, M., Jovanovi, M.M.: ‘Performance comparison of PI and P compensation in DSP-based average-current-controlled three-phase six-switch boost PFC rectifier’, IEEE Trans. Power Electron., 2015, 30, (12), pp. 71237137.
    14. 14)
      • 5. da Fonseca, Z.P., Perin, A.J., Junior, E.A., et al: ‘Single-stage high power factor converters requiring low DC-link capacitance to drive power LEDs’, IEEE Trans. Ind. Electron., 2017, 64, (5), pp. 35573567.
    15. 15)
      • 19. Cantillo, A., De Nardo, A., Femia, N., et al: ‘Stability issues in peak-current-controlled SEPIC’, IEEE Trans. Power Electron., 2011, 26, (2), pp. 551562.
    16. 16)
      • 22. Tulay, G., Iskender, I., Mamizadeh, A.: ‘Boost PFC PI control by using heuristic optimization method’. Int. J. Tech. Phys. Probl. Eng., 2014, vol. 18, pp. 167171.
    17. 17)
      • 18. Al-Saffar, M., Ismail, E., Sabzali, A., et al: ‘An improved topology of SEPIC converter with reduced output voltage ripple’, IEEE Trans. Power Electron., 2008, 23, (5), pp. 310321.
    18. 18)
      • 16. Rossetto, L., Tenti, S.G., Fabiano, P., et al: ‘Fast response high-quality rectifier with sliding mode control’, IEEE Trans. Power Electron., 1994, 9, (2), pp. 146152.
    19. 19)
      • 10. Mahdavi, M., Farzanehfard, H.: ‘Bridgeless SEPIC PFC rectifier with reduced components and conduction losses’, IEEE Trans. Ind. Electron., 2011, 58, (9), pp. 41534160.
    20. 20)
      • 3. Dah, D., Ki, S.-K: ‘Light-load efficiency improvement in buck-derived single-stage single-switch PFC converters’, IEEE Trans. Power Electron., 2013, 28, (5), pp. 21052110.
    21. 21)
      • 6. Liu, X., Xu, J., Chen, Z., et al: ‘Single-inductor dual-output buck–boost power factor correction converter’, IEEE Trans. Ind. Electron., 2015, 62, (2), pp. 943952.
    22. 22)
      • 1. 519–2014-: ‘IEEE recommended practice and requirements for harmonic control in electric power systems’, 11 June 2014, pp. 129.
    23. 23)
      • 27. Erickson, R., Maksimovic, D.: ‘Fundamentals of power electronics’ (Kluwer, Norwell, MA, 2000).
    24. 24)
      • 28. Ridley, R.: ‘Analyzing the SEPIC converter’ (Power Systems Design Europe, 2006), pp. 1418.
    25. 25)
      • 21. Kessal, A., Rahmani, L.: ‘GA-optimized parameters of sliding-mode controller based on both output voltage and input current with an application in the PFC of AC/DC converters’, IEEE Trans. Power Electron., 2014, 29, (6), pp. 31593165.
    26. 26)
      • 26. Bodetto, M., El Aroudi, M., Cid-Pastor, A., et al: ‘Design of AC–DC PFC high-order converters with regulated output current for low-power applications’, IEEE Trans. Power Electron., 2016, 31, (3), pp. 11671172.
    27. 27)
      • 12. Pavlovic, T., Bjazi, T., Ban, Z.: ‘Simplified averaged models of DC–DC power converters suitable for controller design and microgrid simulation’, IEEE Trans. Power Electron., 2013, 28, (7), pp. 32663275.
    28. 28)
      • 24. Spiazzi, G., Mattavelli, P.: ‘Design criteria for power factor preregulators based on SEPIC and Cuk converters in continuous conduction mode’. IEEE Industry Applications Society Annual Meeting, 1994, vol. 2, pp. 10841089.
    29. 29)
      • 8. Umamaheswari, M.G., Uma, G., Annie Isabella, L.: ‘Analysis and design of digital predictive controller for PFC Cuk converter’, J. Comput. Electron., 2014, 13, pp. 142154.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2017.0229
Loading

Related content

content/journals/10.1049/iet-cds.2017.0229
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading