http://iet.metastore.ingenta.com
1887

Internal write-back and read-before-write schemes to eliminate the disturbance to the half-selected cells in SRAMs

Internal write-back and read-before-write schemes to eliminate the disturbance to the half-selected cells in SRAMs

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In static random access memory (SRAM), some cells are not selected for writing, but due to the distribution of the word line signals in the SRAM array, their word line signal is activated. Therefore, they may be mistakenly written. Such cells are called half-selected cells. This study presents two schemes, one for single-ended and the other for differential sensing SRAMs, to eliminate the half-selection disturbance. In the first proposed scheme, the content of the desired row of the SRAM array is read before the write operation and is written back on the corresponding write bitlines. This operation results in eliminating the possibility for noise to be written onto the half-selected cells. In the second scheme, a simple read operation is performed before the write operation. The authors applied their half-selection resilient schemes to 8 and 6 T SRAMs. Simulation results show that in the presence of radioactive particles, by applying their write-back scheme to 8 T SRAM and their read-before-write scheme to the conventional 6 T SRAM, the failure rate is reduced from an average of 56 and 20%, respectively, to 0. The proposed schemes do not degrade write-ability of the SRAM cells, and are bit-addressable. Moreover, their proposed schemes consume smaller amounts of power compared with their rivals.

References

    1. 1)
      • 1. Autran, J.-L., Munteanu, D., Gasiot, G., et al: ‘Soft-error rate of advanced SRAM memories: modeling and Monte Carlo simulation’ (INTECH Open Access Publisher, 2012).
    2. 2)
      • 2. Schrimpf, R.D., Fleetwood, D.M.: ‘Radiation effects and soft errors in integrated circuits and electronic devices’ (World Scientific, 2004), 34.
    3. 3)
      • 3. Leray, J.: ‘Effects of atmospheric neutrons on devices, at sea level and in avionics embedded systems’, Microelectron. Reliab., 2007, 47, (9), pp. 18271835.
    4. 4)
      • 4. Mitra, S., Sanda, P., Seifert, N.: ‘Soft errors: technology trends, system effects, and protection techniques’. 13th IEEE Int. On-Line Testing Symp. (IOLTS 2007), 2007, pp. 44.
    5. 5)
      • 5. Azarpeyvand, A., Salehi, M.E., Firouzi, F., et al: ‘Instruction reliability analysis for embedded processors’. IEEE 13th Int. Symp. on Design and Diagnostics of Electronic Circuits and Systems (DDECS), 2010, pp. 2023.
    6. 6)
      • 6. Shafaei, A., Pedram, M.: ‘Energy-efficient cache memories using a dual-vt 4t sram cell with read-assist techniques’. 2016 Design, Automation & Test in Europe Conf. & Exhibition (DATE), 2016, pp. 457462.
    7. 7)
      • 7. Yahya, F.B., Patel, H.N., Boley, J., et al: ‘A sub-threshold 8t sram macro with 12.29 nw/kb standby power and 6.24 pj/access for battery-less iot socs’, J. Low Power Electron. Appl., 2016, 6, (2), p. 8.
    8. 8)
      • 8. Yahya, F.B., Patel, H.N., Chandra, V., et al: ‘Combined sram read/write assist techniques for near/sub-threshold voltage operation’. 6th Asia Symp. on Quality Electronic Design (ASQED), 2015, pp. 16.
    9. 9)
      • 9. Asada, Y.: ‘Low-power technology for image-processing LSIs’, FUJITSU Sci. Tech. J., 2013, 49, (1), pp. 117123.
    10. 10)
      • 10. Ebrahimi, B., Rostami, M., Afzali-Kusha, A., et al: ‘Statistical design optimization of finfet sram using back-gate voltage’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2011, 19, (10), pp. 19111916.
    11. 11)
      • 11. Ahmad, S., Gupta, M. K., Alam, N., et al: ‘Low leakage single bitline 9 t (sb9t) static random access memory’, Microelectron. J., 2017, 62, pp. 111.
    12. 12)
      • 12. Kushwah, C., Vishvakarma, S., Dwivedi, D.: ‘A 20 nm robust single-ended boostless 7t finfet sub-threshold {SRAM} cell under processâĂŞvoltageâĂŞtemperature variations’, Microelectron. J., 2016, 51, pp. 7588.
    13. 13)
      • 13. Pasandi, G., Qasemi, E., Fakhraie, S.M.: ‘A new low-leakage t-gate based 8 T SRAM cell with improved write-ability in 90 nm CMOS technology’. 22nd Iranian Conf. Electrical Engineering (ICEE), Tehran, Iran, May 2014.
    14. 14)
      • 14. Imani, M., Jafari, M., Ebrahimi, B., et al: ‘Ultra-low power finfet based sram cell employing sharing current concept’, Microelectron. Reliab., 2015, 10.
    15. 15)
      • 15. Pasandi, G., Fakhraie, S.M.: ‘An 8 T low-voltage and low-leakage half-selection disturb-free SRAM using bulk-CMOS and FinFETs’, IEEE Trans. Electron Devices, 2014, 61, (7), pp. 23572363.
    16. 16)
      • 16. Zhang, Z., Liu, Y., Nyathi, J., et al: ‘Performance of CNFET SRAM cells under diameter variation corners’. 52nd IEEE Int. Midwest Symp. on Circuits and Systems (MWSCAS), 2009, pp. 547550.
    17. 17)
      • 17. Aly, R.E., Bayoumi, M., et al: ‘Low-power cache design using 7 T SRAM cell’, IEEE Trans. Circuits Syst. II, Express Briefs, 2007, 54, (4), pp. 318322.
    18. 18)
      • 18. Wen, L., Li, Z., Li, Y.: ‘Single-ended, robust 8 T SRAM cell for low-voltage operation’, Microelectron. J., 2013, 44, (8), pp. 718728.
    19. 19)
      • 19. Kim, Y.B., Kim, Y.-B., Lombardi, F., et al: ‘A low power 8 T SRAM cell design technique for CNFET’. Int. SoC Design Conf. (ISOCC), 2008, Vol. 01, pp. I-176I-179.
    20. 20)
      • 20. Miyaji, K., Tanakamaru, S., Honda, K., et al: ‘70% read margin enhancement by VTH mismatch self-repair in 6T-SRAM with asymmetric pass gate transistor by zero additional cost, post-process, local electron injection’. Symp. on VLSI Circuits, 2010, pp. 4142.
    21. 21)
      • 21. Honda, K., Miyaji, K., Tanakamaru, S., et al: ‘Elimination of half select disturb in 8T-SRAM by local injected electron asymmetric pass gate transistor’. IEEE Custom Integrated Circuits Conf. (CICC), 2010, pp. 14.
    22. 22)
      • 22. Terada, M., Yoshimoto, S., Okumura, S., et al: ‘A 40-nm 256-kb 0.6-v operation half-select resilient 8 T SRAM with sequential writing technique enabling 367-mv VDDmin reduction’. 13th Int. Symp. on Quality Electronic Design (ISQED), 2012, pp. 489492.
    23. 23)
      • 23. Yoshimoto, M., Anami, K., Shinohara, H., et al: ‘A divided word-line structure in the static RAM and its application to a 64k full CMOS RAM’, IEEE J. Solid-State Circuits, 1983, 18, (5), pp. 479485.
    24. 24)
      • 24. Kim, T.-H., Liu, J., Keane, J., et al: ‘A 0.2 v, 480 kb subthreshold SRAM with 1 k cells per bitline for ultra-low-voltage computing’, IEEE J. Solid-State Circuits, 2008, 43, (2), pp. 518529.
    25. 25)
      • 25. Kanda, K., Sadaaki, H., Sakurai, T.: ‘90% write power-saving SRAM using sense-amplifying memory cell’, IEEE J. Solid-State Circuits, 2004, 39, (6), pp. 927933.
    26. 26)
      • 26. Chang, L., Nakamura, Y., Montoye, R. K., et al: ‘A 5.3 GHZ 8T-SRAM with operation down to 0.41v in 65 nm cmos’. IEEE Symp. on VLSI Circuits, 2007, pp. 252253.
    27. 27)
      • 27. Joo, Y., Niu, D., Dong, X., et al: ‘Energy-and endurance-aware design of phase change memory caches’. Proc. of the Conf. Design, Automation and Test in Europe, (European Design and Automation Association), 2010, pp. 136141.
    28. 28)
      • 28. Mittal, S., Vetter, J.S., Li, D.: ‘A survey of architectural approaches for managing embedded dram and non-volatile on-chip caches’, IEEE Trans. Parallel Distrib. Syst., 2015, 26, (6), pp. 15241537.
    29. 29)
      • 29. Clark, L.T., Hoffman, E.J., Miller, J., et al: ‘An embedded 32-b microprocessor core for low-power and high-performance applications’, IEEE J. Solid-State Circuits, 2001, 36, (11), pp. 15991608.
    30. 30)
      • 30. Hennessy, J.L., Patterson, D.A.: ‘Computer architecture: a quantitative approach’ (Elsevier, 2011).
    31. 31)
      • 31. Naseer, R., Boulghassoul, Y., Draper, J., DasGupta, S., Witulski, A.: ‘Critical charge characterization for soft error rate modeling in 90nm sram’. 2007 IEEE Int. Symp. on Circuits and Systems, 2007, pp. 18791882.
    32. 32)
      • 32. Weste, N.H., Harris, D.M.: ‘CMOS VLSI design: a circuits and systems perspective’ (Addison-Wesley/Pearson, Upper Saddle River, New Jersey, USA, 2011).
    33. 33)
      • 33. A. S. University.: ‘Predictive technology model (ptm)’, 2013, available at: http://ptm.asu.edu/.
    34. 34)
      • 34. Jin, W., He, W., Jiang, J., Huang, H., Zhao, X., Sun, Y., Chen, X., Jing, N.: ‘A 0.33 v 2.5 _w cross-point data-aware write structure, read-half-select disturb-free subthreshold sram in 130nm cmos’, Integr. VLSI J., 2017, 58, pp. 2734.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2017.0227
Loading

Related content

content/journals/10.1049/iet-cds.2017.0227
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address