Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Approach for designing and modelling of nanoscale DG MOSFET devices using Kriging metamodelling technique

In this study, the authors focus mainly on the investigation of Kriging interpolation method to elaborate surrogate models of the nanoscale double-gate metal oxide silicon field effect transistors (DG MOSFET) analogue/RF performance under critical operational conditions. The elaboration of such models is made possible through the generation of computer experiments using ATLAS-2D simulator, where the numerical simulations or experimental measurements, account for the accurate behaviour of the device including the ageing phenomena, short channel and quantum confinement effects. The validity of the obtained Kriging models is tested by comparing the predicted responses of the device with their numerical counterpart in terms of some statistical criteria namely the sum of relative errors, the mean percentage of absolute errors and the correlation coefficient. It is also shown that the obtained Kriging interpolation models are precise enough to be used as objective functions in the context of a genetic algorithm optimisation with the aim of improving the device analogue/RF performance in terms of transconductance and cut-off frequency parameters. Therefore, this study may provide more insights regarding the investigation of surrogate modelling tools in the field of deep nanoscale devices especially with the intractable mission of developing physical based models at this scale for nanoelectronic simulators.

References

    1. 1)
      • 4. Bentrcia, T., Djeffal, F.: ‘Compact modeling of multi-gate MOSFET including hot-carrier effects’, in Kwon, M.-J. (Ed.): ‘CMOS Technology, series: electrical engineering developments’ (Nova Science, New York, 2011), ch 04, ISBN: 978-1-61761-325-8.
    2. 2)
      • 19. Wettstein, A., Schenk, A., Fichtner, W.: ‘Quantum device-simulation with the density-gradient model on unstructured grids’, IEEE Trans. Electron Devices, 2001, 48, (2), pp. 279284.
    3. 3)
      • 8. Djeffal, F., Dibi, Z., Hafiane, M.L., et al: ‘Design and simulation of a nanoelectronic DG MOSFET current source using artificial neural networks’, Mater. Sci. Eng.: C, 2007, 27, (5–8), pp. 11111116.
    4. 4)
      • 9. Bentrcia, T., Djeffal, F., Chebaaki, E.: ‘ANFIS-based approach to studying subthreshold behavior including the traps effect for nanoscale thin-film DG MOSFETs’, J. Semiconductors, 2013, 34, (8), pp. 19.
    5. 5)
      • 17. Roux, E., Bouchard, P.O.: ‘Kriging metamodel global optimization of clinching joining processes accounting for ductile damage’, J. Mater. Process. Technol., 2013, 213, (7), pp. 10381047.
    6. 6)
      • 32. Abbott, D.: ‘Applied predictive analytics: principles and techniques for the professional data analyst’ (Wiley, Indianapolis, Indiana, USA, 2014).
    7. 7)
      • 2. Djeffal, F., Abdi, M.A., Dibi, Z., et al: ‘A neural approach to study the scaling capability of the undoped Double-Gate and cylindrical Gate All Around MOSFETs’, Mater. Sci. Eng.: B, 2008, 147, (2–3), pp. 239244.
    8. 8)
      • 5. Taur, Y.: ‘An analytical solution to a double-gate MOSFET with undoped body’, IEEE Electron Device Lett., 2000, 21, (5), pp. 245247.
    9. 9)
      • 21. Shockley, W., Read, W.T.: ‘Statistics of the recombinations of holes and electrons’, Phys. Rev., 1952, 87, (5), pp. 835842.
    10. 10)
      • 28. Montero, J.M., Fernàndez-Avilés, G., Mateu, J.: ‘Spatial and spatio-temporal geostatistical modeling and Kriging’ (Wiley, West Sussex, United Kingdom, 2015).
    11. 11)
      • 7. Chaudhry, A.: ‘Fundamentals of nanoscaled field effect transistors’ (Springer, New York, USA, 2013).
    12. 12)
      • 3. Wagner, M., Karner, M., Cervenka, J., et al: ‘Quantum correction for DG MOSFETs’, J. Comput. Electron., 2006, 5, (4), pp. 397400.
    13. 13)
      • 31. Gaspar, B., Teixeira, A.P., Guedes Soares, C.: ‘Assessment of the efficiency of Kriging surrogate models for structural reliability analysis’, Probabilistic Eng. Mech., 2014, 37, pp. 2434.
    14. 14)
      • 23. Razavi, B.: ‘Design of analog CMOS integrated circuits’ (McGraw-Hill, New York, 2017).
    15. 15)
      • 30. Matta, A., Pezzoni, M., Semeraro, Q.: ‘A Kriging-based algorithm to optimize production systems approximated by analytical models’, J. Intell. Manuf., 2012, 23, (3), pp. 587597.
    16. 16)
      • 11. Gary Wang, G., , Shan, S.: ‘Review of metamodeling techniques in support of engineering design optimization’, J. Mech. Des., 2007, 129, (4), pp. 370380.
    17. 17)
      • 6. AbdElhamid, H.M.: ‘Compact modeling of multiple gate MOS devices’, PhD dissertation, University of Rovira i Virgili Tarragona, Spain, 2007.
    18. 18)
      • 18. ATLAS user manual: Device simulation software, 2012..
    19. 19)
      • 35. Bentrcia, T., Djeffal, F., Chebaki, E., et al: ‘A Kriging framework for the efficient exploitation of the nanoscale junctioless DG MOSFETs including source/drain extensions and hot carrier effect’. Materials Today: Proc., Accepted.
    20. 20)
      • 16. Kumar, S., Das, S., Sheelam, S.: ‘Application of CFD and the Kriging method for optimizing the performance of a generic scramjet combustor’, Acta Astronaut., 2014, 101, pp. 111119.
    21. 21)
      • 36. Bentrcia, T., Djeffal, F., Chebaki, E.: ‘Multi-objective design of nanoscale double gate MOSFET devices using surrogate modeling and global optimization’, in Tiwari, A., Mishra, Y.K., Kobayashi, H., et al (Eds.): ‘Intelligent Nanomaterials’ (Scrivener Publishing LLC, Beverly, Massachusetts, USA, 2017, 2nd edn.) ch 12, pp. 395425.
    22. 22)
      • 20. Lombardi, C., Manzini, S., Saporito, A., et al: ‘A physically based mobility model for numerical simulation of nonplanar devices’, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 1988, 7, (11), pp. 11641171.
    23. 23)
      • 29. Lucifredi, A., Mazzieri, C., Rossi, M.: ‘Application of multi-regressive linear models, dynamic Kriging models and neural network models to predictive maintenance of hydroelectric power systems’, Mech. Syst. Signal Process. ., 2000, 14, (3), pp. 471494.
    24. 24)
      • 14. Pradhan, K.P., Mohapatra, S.K., Sahu, P.K., et al: ‘Impact of high-k gate dielectric on analog and RF performance of nanoscale DG-MOSFET’, Microelectron. J., 2014, 45, (2), pp. 144151.
    25. 25)
      • 13. Grabinski, W., Nauwelaers, B., Schreurs, D.: ‘Transistor level modeling for Analog/RF IC design’ (Dordrecht, The Netherlands, 2006).
    26. 26)
      • 10. Arora, N.: ‘MOSFET modeling for VLSI simulation theory and practice’ (World Scientific Publishing, Singapore, 2007).
    27. 27)
      • 22. Zhang, G., Wang, G., Li, X., et al: ‘Global optimization of reliability design for large ball mill gear transmission based on the Kriging model and genetic algorithm’, Mech. Mach. Theory, 2013, 69, pp. 321336.
    28. 28)
      • 24. Sharma, D., Vishvakarma, S.K.: ‘Analyses of DC and analog/RF performances for short channel quadruple-gate gate-all-around MOSFET’, Microelectron. J., 2015, 46, (8), pp. 731739.
    29. 29)
      • 1. International Technology Roadmap for Semiconductors (ITRS), 2013. Available at http://itrs.net.
    30. 30)
      • 25. Bentrcia, T., Djeffal, F., Chebaki, E., et al: ‘Impact of the drain and source extensions on nanoscale Double-Gate Junctionless MOSFET analog and RF performances’, Mater. Sci. Semicond. Process., 2016, 42, pp. 264267.
    31. 31)
      • 15. Kersaudy, P., Sudret, B., Varsier, N., et al: ‘A new surrogate modeling technique combining Kriging and polynomial chaos expansions – Application to uncertainty analysis in computational dosimetry’, J. Comput. Phys., 2015, 286, pp. 103117.
    32. 32)
      • 27. Yi, P., Wei, K., Kong, X., et al: ‘Cumulative PSO-Kriging model for slope reliability analysis’, Probabilistic Eng. Mech., 2015, 39, pp. 3945.
    33. 33)
      • 33. Deb, K.: ‘Multi-objective optimization using evolutionary algorithms’ (Wiley, Chichester, UK, 2001).
    34. 34)
      • 12. Zhang, Y., Hu, S., Wu, J., et al: ‘Multiobjective optimization of double suction centrifugal pump using Kriging metamodels’, Adv. Eng. Softw., 2014, 74, pp. 1626.
    35. 35)
      • 34. Deb, K., Pratap, A., Agarwal, S., et al: ‘A fast and elitist multiobjective genetic algorithm: NSGA-II’, IEEE Trans. Evol. Comput., 2002, 6, (2), pp. 182197.
    36. 36)
      • 26. Lamoureux, B., Mechbal, N., Massé, J.R.: ‘A combined sensitivity analysis and Kriging surrogate modeling for early validation of health indicators’, Reliab. Eng. Syst. Safety, 2014, 130, pp. 1226.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2017.0204
Loading

Related content

content/journals/10.1049/iet-cds.2017.0204
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address