access icon free Pulse train controlled quadratic buck converter operating in discontinuous conduction mode

Emerging technologies in the field of integrated circuits demand wider conversion ratios with a substantial reduction in size and weight. Quadratic buck converter is a popular choice for such an application which is investigated under voltage-mode pulse train control operating in discontinuous conduction mode. The combination of high-power control pulse P H and low-power control pulse P L in a control pulse repetition cycle which has a significant effect on the control performance of the system is studied. For a reliable design, a complete assessment of its dynamics under all possible operating conditions is essential for its safe operating horizons. Computer simulations are performed to capture the periodic transformation undergone due to border collision bifurcation. However, the stable periodic operation is examined with the supporting evidence of movement of eigenvalues from 2D discrete-time model and maximal Lyapunov exponent obtained using QR factorisation method for the variation in the input voltage and the load conditions. An experimental setup is also built to verify the system dynamics which are observed in simulations and analytical results.

Inspec keywords: power convertors; Lyapunov methods; bifurcation; matrix decomposition; power control; voltage control; eigenvalues and eigenfunctions

Other keywords: pulse train controlled quadratic buck converter; discontinuous conduction mode; high-power control pulse; integrated circuits; maximal Lyapunov exponent; control performance; safe operating horizons; input voltage variation; stable periodic operation; QR factorisation method; low-power control pulse; load conditions; 2D discrete-time model; control pulse repetition cycle; computer simulations; collision bifurcation; eigenvalues; conversion ratios; voltage-mode pulse train control

Subjects: Linear algebra (numerical analysis); Linear algebra (numerical analysis); Stability in control theory; Power electronics, supply and supervisory circuits; Voltage control; Power and energy control

References

    1. 1)
      • 2. Kavitha, A., Uma, G., Beni Reesha, M.: ‘Analysis of fast-scale instability in a power factor correction Cuk converter’, IET Power Electron., 2012, 5, (8), pp. 13331340.
    2. 2)
      • 22. Eckmann, J.-P., Oliffson Kamphorst, S., Ruelle, D., et al: ‘Lyapunov exponents from time series’, Phys. Rev. A, 1986, 34, (6), pp. 49714979.
    3. 3)
      • 11. Zhou, X., Xu, P., Lee, F.C.: ‘A novel current-sharing control technique for low-voltage high-current voltage regulator module applications’, IEEE Trans. Power Electron., 2000, 15, (6), pp. 11531162.
    4. 4)
      • 4. Giaouris, D., Banerjee, S., Imrayed, O., et al: ‘Complex interaction between tori and onset of three-frequency quasi-periodicity in a current mode controlled boost converter’, IEEE Trans. Circuits Syst. I, 2012, 59, (1), pp. 207214.
    5. 5)
      • 1. Banerjee, S., Verghese, G.C.: ‘Nonlinear phenomena in power electronics: attractors, bifurcations, chaos and nonlinear control’ (IEEE Press, New York, 2001).
    6. 6)
      • 17. Sha, J., Xu, J.P., Bao, B.C., et al: ‘Effects of circuit parameters on dynamics of current-mode pulse train controlled buck converter’, IEEE Trans. Ind. Electron., 2014, 61, (3), pp. 15621573.
    7. 7)
      • 3. Kavitha, A., Uma, G.: ‘Comparative study between peak current mode and hysteretic current mode control of a single-ended primary inductance converter’, IET Power Electron., 2012, 5, (7), pp. 12261235.
    8. 8)
      • 8. Maity, S., Tripathy, D., Bhattacharya, T.K., et al: ‘Bifurcation analysis of PWM-1 voltage-mode controlled buck converter using the exact discrete model’, IEEE Trans. Circuits Syst. I, 2007, 54, (5), pp. 11201130.
    9. 9)
      • 7. Giaouris, D., Banerjee, S., Zahawi, B., et al: ‘Stability analysis of the continuous conduction mode buck converter via Filippov's method’, IEEE Trans. Circuits Syst. I, 2008, 55, (4), pp. 10841096.
    10. 10)
      • 6. Kavitha, A., Uma, G.: ‘Experimental verification of Hopf bifurcation in DC–DC Luo converter’, IEEE Trans. Power Electron., 2008, 23, (6), pp. 28782883.
    11. 11)
      • 14. Morales-Saldana, J.A., Leyva-Ramos, J., Carbajal-Gutierrez, E.E., et al: ‘Average current-mode control scheme for a quadratic buck converter with a single switch’, IEEE Trans. Power Electron., 2008, 23, (1), pp. 485490.
    12. 12)
      • 20. Qin, M., Xu, J.P.: ‘Improved pulse regulation control technique for switching DC–DC converters operating in DCM’, IEEE Trans. Ind. Electron., 2013, 60, (5), pp. 18191830.
    13. 13)
      • 5. Qiu, Y., Liu, H., Chen, X.: ‘Digital average current-mode control of PWM DC–DC converters without current sensors’, IEEE Trans. Ind. Electron., 2010, 57, (5), pp. 16701677.
    14. 14)
      • 15. Morales-Saldana, J.A., Loera-Palomo, R., Palacios-Hernandez, E.: ‘Parameters selection criteria of proportional–integral controller for a quadratic buck converter’, IET Power Electron., 2014, 7, (6), pp. 15271535.
    15. 15)
      • 13. Maksimovic, D., Cuk, S.: ‘Switching converters with wide dc conversion range’, IEEE Trans. Power Electron., 1991, 6, (1), pp. 151157.
    16. 16)
      • 21. Sha, J., Xu, J.P., Zhong, S., et al: ‘Control pulse combination-based analysis of pulse train controlled DCM switching DC–DC converters’, IEEE Trans. Ind. Electron., 2015, 62, (1), pp. 246255.
    17. 17)
      • 12. Morales-Saldaña, J.A., Carbajal-Gutierrez, E.E., Leyva-Ramos, J.: ‘Modeling of switch-mode DC-DC cascade converters’, IEEE Trans. Aerosp. Electron. Syst., 2002, 38, (1), pp. 295299.
    18. 18)
      • 18. Xu, J.P., Wang, J.P.: ‘Bifrequency pulse-train control technique for switching dc–dc converters operating in DCM’, IEEE Trans. Ind. Electron., 2011, 58, (8), pp. 36583667.
    19. 19)
      • 19. Telefus, M., Shteynberg, A., Ferdowsi, M., et al: ‘Pulse train control technique for flyback converter’, IEEE Trans. Power Electron., 2004, 19, (3), pp. 757764.
    20. 20)
      • 9. Panov, Y., Javanovic, M.M.: ‘Design and performance evaluation of low voltage/high current dc/dc on board modules’, IEEE Trans. Power Electron., 2001, 16, (1), pp. 2633.
    21. 21)
      • 16. Wei, X.L., Tsang, K.M., Chan, W.L.: ‘Non-linear PWM control of single-switch quadratic buck converters using internal model’, IET Power Electron., 2009, 2, (5), pp. 475483.
    22. 22)
      • 10. Panov, Y., Javanovic, M.M.: ‘Design consideration for 12 V-1.5 V; 50 A, voltage regulator modules’, IEEE Trans. Power Electron., 2001, 16, (6), pp. 776783.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2017.0194
Loading

Related content

content/journals/10.1049/iet-cds.2017.0194
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading