http://iet.metastore.ingenta.com
1887

Pulse train controlled quadratic buck converter operating in discontinuous conduction mode

Pulse train controlled quadratic buck converter operating in discontinuous conduction mode

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Emerging technologies in the field of integrated circuits demand wider conversion ratios with a substantial reduction in size and weight. Quadratic buck converter is a popular choice for such an application which is investigated under voltage-mode pulse train control operating in discontinuous conduction mode. The combination of high-power control pulse P H and low-power control pulse P L in a control pulse repetition cycle which has a significant effect on the control performance of the system is studied. For a reliable design, a complete assessment of its dynamics under all possible operating conditions is essential for its safe operating horizons. Computer simulations are performed to capture the periodic transformation undergone due to border collision bifurcation. However, the stable periodic operation is examined with the supporting evidence of movement of eigenvalues from 2D discrete-time model and maximal Lyapunov exponent obtained using QR factorisation method for the variation in the input voltage and the load conditions. An experimental setup is also built to verify the system dynamics which are observed in simulations and analytical results.

References

    1. 1)
      • 1. Banerjee, S., Verghese, G.C.: ‘Nonlinear phenomena in power electronics: attractors, bifurcations, chaos and nonlinear control’ (IEEE Press, New York, 2001).
    2. 2)
      • 2. Kavitha, A., Uma, G., Beni Reesha, M.: ‘Analysis of fast-scale instability in a power factor correction Cuk converter’, IET Power Electron., 2012, 5, (8), pp. 13331340.
    3. 3)
      • 3. Kavitha, A., Uma, G.: ‘Comparative study between peak current mode and hysteretic current mode control of a single-ended primary inductance converter’, IET Power Electron., 2012, 5, (7), pp. 12261235.
    4. 4)
      • 4. Giaouris, D., Banerjee, S., Imrayed, O., et al: ‘Complex interaction between tori and onset of three-frequency quasi-periodicity in a current mode controlled boost converter’, IEEE Trans. Circuits Syst. I, 2012, 59, (1), pp. 207214.
    5. 5)
      • 5. Qiu, Y., Liu, H., Chen, X.: ‘Digital average current-mode control of PWM DC–DC converters without current sensors’, IEEE Trans. Ind. Electron., 2010, 57, (5), pp. 16701677.
    6. 6)
      • 6. Kavitha, A., Uma, G.: ‘Experimental verification of Hopf bifurcation in DC–DC Luo converter’, IEEE Trans. Power Electron., 2008, 23, (6), pp. 28782883.
    7. 7)
      • 7. Giaouris, D., Banerjee, S., Zahawi, B., et al: ‘Stability analysis of the continuous conduction mode buck converter via Filippov's method’, IEEE Trans. Circuits Syst. I, 2008, 55, (4), pp. 10841096.
    8. 8)
      • 8. Maity, S., Tripathy, D., Bhattacharya, T.K., et al: ‘Bifurcation analysis of PWM-1 voltage-mode controlled buck converter using the exact discrete model’, IEEE Trans. Circuits Syst. I, 2007, 54, (5), pp. 11201130.
    9. 9)
      • 9. Panov, Y., Javanovic, M.M.: ‘Design and performance evaluation of low voltage/high current dc/dc on board modules’, IEEE Trans. Power Electron., 2001, 16, (1), pp. 2633.
    10. 10)
      • 10. Panov, Y., Javanovic, M.M.: ‘Design consideration for 12 V-1.5 V; 50 A, voltage regulator modules’, IEEE Trans. Power Electron., 2001, 16, (6), pp. 776783.
    11. 11)
      • 11. Zhou, X., Xu, P., Lee, F.C.: ‘A novel current-sharing control technique for low-voltage high-current voltage regulator module applications’, IEEE Trans. Power Electron., 2000, 15, (6), pp. 11531162.
    12. 12)
      • 12. Morales-Saldaña, J.A., Carbajal-Gutierrez, E.E., Leyva-Ramos, J.: ‘Modeling of switch-mode DC-DC cascade converters’, IEEE Trans. Aerosp. Electron. Syst., 2002, 38, (1), pp. 295299.
    13. 13)
      • 13. Maksimovic, D., Cuk, S.: ‘Switching converters with wide dc conversion range’, IEEE Trans. Power Electron., 1991, 6, (1), pp. 151157.
    14. 14)
      • 14. Morales-Saldana, J.A., Leyva-Ramos, J., Carbajal-Gutierrez, E.E., et al: ‘Average current-mode control scheme for a quadratic buck converter with a single switch’, IEEE Trans. Power Electron., 2008, 23, (1), pp. 485490.
    15. 15)
      • 15. Morales-Saldana, J.A., Loera-Palomo, R., Palacios-Hernandez, E.: ‘Parameters selection criteria of proportional–integral controller for a quadratic buck converter’, IET Power Electron., 2014, 7, (6), pp. 15271535.
    16. 16)
      • 16. Wei, X.L., Tsang, K.M., Chan, W.L.: ‘Non-linear PWM control of single-switch quadratic buck converters using internal model’, IET Power Electron., 2009, 2, (5), pp. 475483.
    17. 17)
      • 17. Sha, J., Xu, J.P., Bao, B.C., et al: ‘Effects of circuit parameters on dynamics of current-mode pulse train controlled buck converter’, IEEE Trans. Ind. Electron., 2014, 61, (3), pp. 15621573.
    18. 18)
      • 18. Xu, J.P., Wang, J.P.: ‘Bifrequency pulse-train control technique for switching dc–dc converters operating in DCM’, IEEE Trans. Ind. Electron., 2011, 58, (8), pp. 36583667.
    19. 19)
      • 19. Telefus, M., Shteynberg, A., Ferdowsi, M., et al: ‘Pulse train control technique for flyback converter’, IEEE Trans. Power Electron., 2004, 19, (3), pp. 757764.
    20. 20)
      • 20. Qin, M., Xu, J.P.: ‘Improved pulse regulation control technique for switching DC–DC converters operating in DCM’, IEEE Trans. Ind. Electron., 2013, 60, (5), pp. 18191830.
    21. 21)
      • 21. Sha, J., Xu, J.P., Zhong, S., et al: ‘Control pulse combination-based analysis of pulse train controlled DCM switching DC–DC converters’, IEEE Trans. Ind. Electron., 2015, 62, (1), pp. 246255.
    22. 22)
      • 22. Eckmann, J.-P., Oliffson Kamphorst, S., Ruelle, D., et al: ‘Lyapunov exponents from time series’, Phys. Rev. A, 1986, 34, (6), pp. 49714979.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2017.0194
Loading

Related content

content/journals/10.1049/iet-cds.2017.0194
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address