Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Systematic circuit design and analysis of a non-ideal DC–DC pulse width modulation boost converter

This study presents systematic design and detailed circuit analysis of a non-ideal DC–DC pulse width modulation boost converter. An accurate mathematical formula is thrived to evaluate the duty cycle, which enables the converter to neutralise the voltage drop across the parasitic elements. Furthermore, the modified relationships for the design of inductor have been obtained, which satisfy the requirements of stipulated inductor current ripples in the presence of parasitics. Moreover, the mathematical relation is developed to design the output capacitor, which is more accurate than the conventionally derived expression. In addition to this, the output capacitor's equivalent series resistance effect on the output voltage ripples is also investigated. Finally, the experimental and simulation results are used to validate the theoretical analysis.

References

    1. 1)
      • 14. Garg, M.M., Pathak, M.K., Hote, Y.V.: ‘Effect of non-idealities on the design and performance of a DC–DC buck converter’, J. Power Electron., 2016, 16, (3), pp. 832839.
    2. 2)
      • 1. Forouzesh, M., Siwakoti, Y.P., Gorji, , et al: ‘Step-up DC–DC converters: a comprehensive review of voltage boosting techniques, topologies, and applications’, IEEE Trans. Power Electron., 2017, 32, (12), pp. 91439178, doi: 10.1109/TPEL.2017.2652318.
    3. 3)
      • 20. Sun, Z., Chew, K.W.R., Tang, H., et al: ‘A 0.42-V input boost DC–DC converter with pseudo-digital pulse width modulation’, IEEE Trans. Circuits Syst. II, Express Briefs, 2014, 61, (8), pp. 634638.
    4. 4)
      • 23. Leon Masich, A., Valderrama-Blavi, H., Bosque-Moncusi, J., et al: ‘Sliding-mode-control-based boost converter for high-voltage–low-power applications’, IEEE Trans. Ind. Electron., 2015, 62, (1), pp. 229237.
    5. 5)
      • 15. Garg, M.M.: ‘Modeling and control of DC–DC converters’. PhD thesis, Indian Institute of Technology, Roorkee, 2016.
    6. 6)
      • 4. Siddhartha, V., Hote, Y.V.: ‘Non-inverting buck–boost derived hybrid converter’. Proc. IEEE Int. Conf. Emerging Trends in Electrical Electronics & Sustainable Energy Systems, March 2016, pp. 234240.
    7. 7)
      • 21. Erickson, R.W., Maksimovic, D.: ‘Fundamentals of power electronics’ (Kluwer Academic Publications, 2004).
    8. 8)
      • 16. Babaei, E., Mahmoodieh, M.E.S., Mahery, H.M.: ‘Operational modes and output-voltage-ripple analysis and design considerations of buck–boost DC–DC converters’, IEEE Trans. Ind. Electron., 2012, 59, (1), pp. 381391.
    9. 9)
      • 7. Yazici, I., Yaylaci, E.K.: ‘Fast and robust voltage control of DC–DC boost converter by using fast terminal sliding mode controller’, IET Power Electron., 2015, 9, (1), pp. 120125.
    10. 10)
      • 9. Kobaku, T., Sachin, P., Vivek, A.: ‘Experimental evaluation of internal model control scheme on a DC–DC boost converter exhibiting non-minimum phase behavior’, IEEE Trans. Power Electron., 2017, 32, (11), pp. 88808891.
    11. 11)
      • 19. Wei, C.L., Shih, M.H.: ‘Design of a switched-capacitor DC–DC converter with a wide input voltage range’, IEEE Trans. Circuits Syst. I, 2013, 60, (6), pp. 16481656.
    12. 12)
      • 8. Chen, Z., Gao, W., Hu, J., et al: ‘Closed-loop analysis and cascade control of a nonminimum phase boost converter’, IEEE Trans. Power Electron., 2012, 26, (4), pp. 12371252.
    13. 13)
      • 27. Cheong, S.V., Chung, S.H., Ioinovici, A.: ‘Duty-cycle control boosts DC–DC converters’, IEEE Circuits Devices Mag., 1993, 19, (2), pp. 3637.
    14. 14)
      • 18. Mihajlovic, Z., Lehman, B., Sun, C.: ‘Output ripple analysis of switching DC–DC converters’, IEEE Trans. Circuits Syst. I, 2004, 51, (8), pp. 15961611.
    15. 15)
      • 2. Buccella, C., Cecati, C., Abu, R.H.: ‘An overview on distributed generation and smart grid concepts and technologies’, Power Electron. Renew. Energy Syst. Transp. Ind. Appl., 2014, pp. 5068.
    16. 16)
      • 28. Ji, Q., Ruan, X., Xu, M., et al: ‘Effect of duty cycle on common mode conducted noise of DC–DC converters’. Proc. IEEE Energy Conversion Congress and Exposition, 2009, pp. 36163621.
    17. 17)
      • 6. Ismail, E.H., Al-Saffar, M.A., Sabzali, A.J.: ‘High conversion ratio DC–DC converters with reduced switch stress’, IEEE Trans. Circuits Syst. I, 2008, 55, (7), pp. 21392151.
    18. 18)
      • 26. Amaral, A.M., Cardoso, A.M.: ‘Use of ESR to predict failure of output filtering capacitors in boost converters’. Proc. IEEE Industrial Electronics Int. Symp., 2004, vol. 2, pp. 13091314.
    19. 19)
      • 25. Rashid, M.H.: ‘Power electronics handbook: devices, circuits and applications’ (Academic Press, 2010).
    20. 20)
      • 12. Chen, T.M., Chen, C.L.: ‘Analysis and design of asymmetrical half bridge flyback converter’, Proc. IEEE Electr. Power Appl., 2002, 149, (6), pp. 433440.
    21. 21)
      • 11. Czarkowski, D., Kazimierczuk, M.K.: ‘Circuit models of PWM DC–DC converters’. Proc. IEEE NAECON, 1992, pp. 407413.
    22. 22)
      • 22. Kazimierczuk, M.K.: ‘Pulse-widthmodulated DC–DCpower converters’ (John Wiley & Sons, 2015).
    23. 23)
      • 13. Musunuri, S., Chapman, P.L., Zou, J., et al: ‘Design issues for monolithic DC–DC converters’, IEEE Trans. Power Electron., 2005, 20, (3), pp. 639649.
    24. 24)
      • 17. Babaei, E., Mahmoodieh, M.E.S., Mahery, H.M.: ‘Calculation of output voltage ripple and design considerations of SEPIC converter’, IEEE Trans. Ind. Electron., 2014, 61, (3), pp. 12131222.
    25. 25)
      • 10. Ghosh, A., Banerjee, S., Sarkar, M., et al: ‘Design and implementation of type-II and type-III controller for DC–DC switched-mode boost converter by using K-factor approach and optimisation techniques’, IET Power Electron., 2016, 9, (5), pp. 938950.
    26. 26)
      • 5. Tofoli, F.L., de Castro Pereira, D., de Paula, W.J., et al: ‘Survey on non-isolated high-voltage step-up dc–dc topologies based on the boost converter’, IET Power Electron., 2015, 8, (10), pp. 20442057.
    27. 27)
      • 3. Khan, M.A., Ahmed, A., Hussain, I., et al: ‘Performance analysis of bidirectional DC–DC converters for electric vehicles’, IEEE Trans. Ind. Appl., 2015, 51, (4), pp. 34423452.
    28. 28)
      • 24. Tymerski, R., Li, D.: ‘Extended ripple analysis of PWM DC-to-DC converters’, IEEE Trans. Power Electron., 1993, 8, (4), pp. 588595.
    29. 29)
      • 29. Saxena, S., Hote, Y.V.: ‘Internal model control based PID tuning using first-order filter’, Int. J. Control Autom. Syst., 2017, 15, (1), pp. 149159.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2017.0168
Loading

Related content

content/journals/10.1049/iet-cds.2017.0168
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address