Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Low-power 2.4 GHz ZigBee transceiver with inductor-less radio-frequency front-end for Internet of things applications

A fully integrated low-power 2.4 GHz ZigBee transceiver with inductor-less radio-frequency front-end in 180 nm complementary metal–oxide–semiconductor is presented. The proposed double push–pull low noise amplifier collaborates with a current-mode down-converter to provide wideband low-noise amplification, as well as the out-of-band blocker resilience. To save power, a sliding frequency synthesiser (FS) with a low-frequency running voltage controlled oscillator is employed to provide the local oscillation for both the receiver and transmitter. Measurement results show that the RX reaches −102 dBm sensitivity and dissipates 11 mA power. The FS achieves −91 dBc/Hz in-band phase noise with only 6.5 mA DC power. The TX features +7.6 dBm maximum output channel power, 4% error vector magnitude at the cost of 19.5 mA power.

References

    1. 1)
      • 8. Farahani, S.: ‘ZigBee wireless network and transceiver’ (Newnes, Inc., 2008).
    2. 2)
      • 9. Blaakmeer, S.C., Klumperink, E.A.M., Leenarts, D.M.W., et al: ‘Wideband balun-LNA with simultaneous output balancing, noise-canceling and distortion-canceling’, IEEE J. Solid-State Circuits, 2008, 43, (6), pp. 13411350.
    3. 3)
      • 16. Co-existence of IEEE 802.15.4 at 2.4 GHz application note, JN-AN-1079, 8-Nov-2013. NXP Inc..
    4. 4)
      • 15. IEEE Std. 802.15.4-2003, LR-WPANs.
    5. 5)
      • 4. Klunge, W., Poegel, F., Roller, H., et al: ‘A full integrated 2.4 GHz IEEE 802.15.4-compliant transceiver for ZigBee applications’, J. Solid-State Circuits, 2006, 41, pp. 27672774.
    6. 6)
      • 13. Wu, C.P., Tsao, H.W.: ‘A 110 MHz 84 dB CMOS programmable gain amplifier with integrated RSSI function’, IEEE J. Solid-State Circuits, 2005, 40, pp. 12491258.
    7. 7)
      • 5. Kwon, Y., Park, S.G., Park, T.J., et al: ‘An ultra-low power CMOS transceiver using various low-power techniques for LR-WPAN applications’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2012, 59, pp. 324336.
    8. 8)
      • 17. Extending 2.4G ZigBee short range radio performance with Skyworks Front-end Modules. Microwave Journal Technical Library.
    9. 9)
      • 10. Tan, S.C.-G., Song, F., Zheng, R., et al: ‘An ultra-low-cost high-performance bluetooth SOC in 0.11 μm CMOS’, IEEE J. Solid-State Circuits, 2012, 47, (11), pp. 26652677.
    10. 10)
      • 14. Kumngern, M., Lerkvaranyu, S., Dejhan, K., et al: ‘Wide-band CMOS precision rectifier circuit’, IEEE Commun. Inf. Technol., 2008, 30, pp. 315320.
    11. 11)
      • 6. Zhang, L., Jiang, H., Wei, J., et al: ‘A reconfigurable sliding-IF transceiver for 400 MHz/2.4 GHz IEEE 802.15.6/ZigBee WBAN hubs with only 21% tuning range VCO’, J. Solid-State Circuits, 2013, 48, pp. 27052716.
    12. 12)
      • 12. Behbahani, F.B., Kishigami, Y., Leete, J., et al: ‘CMOS mixers and polyphase filters for large image rejection’, IEEE J. Solid-State Circuits, 2001, 36, (6), pp. 281287.
    13. 13)
      • 7. Gu, Q.: ‘RF system design of transceivers for wireless communications’ (Nokia Mobile Phones, Inc., 2007).
    14. 14)
      • 3. Gil, J., Kim, J.H., Kim, C.S., et al: ‘A full integrated low-power high-coexistence 2.4 GHz ZigBee transceiver for biomedical and healthcare applications’, IEEE Trans. Microw. Theory Tech., 2014, 62, pp. 18791889.
    15. 15)
      • 2. Rogers, J.W.M., Plett, C.: ‘Radio frequency integrated circuit design’ (Artech House, Inc., 2010).
    16. 16)
      • 1. Reiter, G.: ‘Wireless connectivity for the Internet of things’. White Paper, Texas Instruments, June 2014.
    17. 17)
      • 18. Yin, S., Cui, J., Luo, A., et al: ‘A high efficient baseband transceiver for IEEE 802.15.4 LR-WPAN systems’. IEEE Ninth Int. Conf. ASIC, 2011.
    18. 18)
      • 11. Poon, A., Chang, A., Samavati, H., et al: ‘Reduction of inductive crosstalk using quadrupole inductors’, IEEE J. Solid-State Circuits, 2009, 44, (6), pp. 17561764.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2017.0165
Loading

Related content

content/journals/10.1049/iet-cds.2017.0165
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address