http://iet.metastore.ingenta.com
1887

Optimal design of wideband fractional order digital integrator using symbiotic organisms search algorithm

Optimal design of wideband fractional order digital integrator using symbiotic organisms search algorithm

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Optimal design of digital rational approximations with α-dependant coefficients to model the fractional order integrator of any arbitrary order α, where α ε (0, 1), is presented in this work. The analytical expressions of the coefficients for the proposed fractional order digital integrators (FODIs) are derived by a two-step method: (a) the coefficients of FODIs for α varying from 0.01 to 0.99 in steps of 0.01 are determined by a meta-heuristic optimisation algorithm called symbiotic organisms search (SOS) and (b) curve fitting is applied on the SOS-optimised coefficients to obtain their generalised expressions. Previous works dealing with the design of FODI based on various meta-heuristic optimisers have considered only a few specific fractional orders; hence, the practical usability of such designs is restricted. This gap provides the motivation for conducting this research. Design quality robustness and convergence consistency of SOS are extensively compared with three other well-known meta-heuristic algorithms. The superior modelling accuracy of the proposed designs is justified by comparing with the recent literature. Simulation results validate the effectiveness of the proposed models as a fractional order proportional–integral controller.

References

    1. 1)
      • 1. Oldham, K.B., Spanier, J.: ‘The fractional calculus’ (Academic Press, New York, 1974).
    2. 2)
      • 2. West, B.J., Bologna, M., Grigolini, P.: ‘Physics of fractal operators’ (Springer Verlag, New York, 2003).
    3. 3)
      • 3. Wu, J.-X., Li, C.-M., Ho, Y.-R., et al: ‘Peripheral arterial stenosis screening with a fractional-order integrator and info-gap decision-making’, IEEE Sens. J., 2016, 16, (8), pp. 26912700.
    4. 4)
      • 4. Mocak, J., Janiga, I., Rievaj, M.: ‘The use of fractional differentiation or integration for signal improvement’, Meas. Sci. Rev., 2007, 7, (5), pp. 3942.
    5. 5)
      • 5. Bruton, L.T.: ‘Low-sensitivity digital ladder filters’, IEEE Trans. Circuits Syst., 1975, 22, (3), pp. 168176.
    6. 6)
      • 6. Davis, R., Trick, T.: ‘Optimum design of low-pass switched capacitor ladder filters’, IEEE Trans. Circuits Syst., 1980, 27, (6), pp. 522527.
    7. 7)
      • 7. Mohan, P.V.A., Ramachandran, V., Swamy, M.N.S.: ‘Switched capacitor filters: theory, analysis, and design’ (Prentice Hall PTR, New Jersey, USA, 1995).
    8. 8)
      • 8. Laker, K., Ghausi, M.: ‘Modern filter design: active RC and switched capacitor’ (SciTech Publishing Inc., North Carolina, USA, 2003).
    9. 9)
      • 9. Al-Alaoui, M.A.: ‘Discretization methods of fractional parallel PID controllers’. Proc. 16th Int. Conf. on Electronic Circuits and Systems (ICECS), 2009, pp. 327330.
    10. 10)
      • 10. Ferdi, Y.: ‘Computation of fractional order derivative and integral via power series expansion and signal modeling’, Nonlinear Dyn., 2006, 46, (1–2), pp. 115.
    11. 11)
      • 11. Chen, Y.Q., Vinagre, B.M., Podlubny, I.: ‘Continued fraction expansion approaches to discretizing fractional order derivatives – an expository review’, Nonlinear Dyn., 2004, 38, (1–4), pp. 155170.
    12. 12)
      • 12. Visweswaran, G.S., Varshney, P., Gupta, M.: ‘New approach to realize fractional power in z-domain at low frequency’, IEEE Trans. Circuits Syst. II, 2011, 58, (3), pp. 179183.
    13. 13)
      • 13. Vinagre, B.M., Chen, Y.Q., Petras, I.: ‘Two direct Tustin discretization methods for fractional-order differentiator/integrator’, J. Frankl. Inst., 2003, 340, (5), pp. 349362.
    14. 14)
      • 14. Vinagre, B.M., Podlubny, I., Hernandez, A., et al: ‘Some approximations of fractional order operators used in control theory and applications’, J. Fract. Calculus Appl. Anal., 2000, 3, (3), pp. 231248.
    15. 15)
      • 15. Tseng, C.C.: ‘Design of FIR and IIR fractional order Simpson digital integrators’, Signal Process., 2007, 87, (5), pp. 10451057.
    16. 16)
      • 16. Chen, Y.Q., Moore, K.L.: ‘Discretization schemes for fractional-order differentiators and integrators’, IEEE Trans. Circuits Syst. I, Fundam. Theor. Appl., 2002, 49, (3), pp. 363367.
    17. 17)
      • 17. Romero, M., de Madrid, A.P., Manoso, C., et al: ‘IIR approximations to the fractional differentiator/integrator using Chebyshev polynomials theory’, ISA Trans., 2013, 52, (4), pp. 461468.
    18. 18)
      • 18. Barbosa, R.S., Machado, J.A.T., Silva, M.F.: ‘Time domain design of fractional differintegrators using least-squares’, Signal Process., 2006, 86, (10), pp. 25672581.
    19. 19)
      • 19. Krishna, B.T., Reddy, K.V.V.S.: ‘Design of fractional order digital differentiators and integrators using indirect discretization’, Fract. Calc. Appl. Anal., 2008, 11, (2), pp. 143151.
    20. 20)
      • 20. Krishna, B.T.: ‘Studies of fractional order differentiators and integrators: a survey’, Signal Process., 2011, 91, (3), pp. 386426.
    21. 21)
      • 21. Yadav, R., Gupta, M.: ‘Approximations of higher-order fractional differentiators and integrators using indirect discretization’, Turk. J. Electr. Eng. Comput. Sci., 2015, 23, (3), pp. 666680.
    22. 22)
      • 22. Gupta, M., Yadav, R.: ‘Design of improved fractional order integrators using indirect discretization method’, Int. J. Comput. Appl., 2012, 59, (14), pp. 1924.
    23. 23)
      • 23. Gupta, M., Yadav, R.: ‘Optimization of integer order integrators for deriving improved models of their fractional counterparts’, J. Optim., 2013, 2013, (article id: 142390), pp. 111.
    24. 24)
      • 24. Yadav, R., Gupta, M.: ‘New improved fractional order integrators using PSO optimization’, Int. J. Electron., 2015, 102, (3), pp. 490499.
    25. 25)
      • 25. Das, S., Majumder, B., Pakhira, A., et al: ‘Optimizing continued fraction expansion based IIR realization of fractional order differ-integrators with genetic algorithm’. Proc. Int. Conf. on Process Automation, Control and Computing, Coimbatore, India, 2011, pp. 16.
    26. 26)
      • 26. Cheng, M.Y., Prayogo, D.: ‘Symbiotic organisms search: a new metaheuristic optimization algorithm’, Comput. Struct., 2014, 139, pp. 98112.
    27. 27)
      • 27. Bosman, P.A.N.: ‘On gradients and hybrid evolutionary algorithms for real-valued multiobjective optimization’, IEEE Trans. Evol. Comput., 2012, 16, (1), pp. 5169.
    28. 28)
      • 28. Kemp, R.: ‘Fundamentals of the average case analysis of particular algorithms’ (John Wiley & Sons Ltd and B.G. Teubner, New York, 1984).
    29. 29)
      • 29. Holland, J.H.: ‘Adaptation in natural and artificial systems’ (MIT Press, Cambridge, 1992).
    30. 30)
      • 30. Kennedy, J., Eberhart, R.: ‘Particle swarm optimization’. Proc. 4th IEEE Int. Conf. on Neural Networks, 1995, vol. 4, pp. 19421948.
    31. 31)
      • 31. Storn, R., Price, K.: ‘Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces’, J. Glob. Optim., 1997, 11, (4), pp. 341359.
    32. 32)
      • 32. Saha, D., Datta, A., Das, P.: ‘Optimal coordination of directional overcurrent relays in power systems using symbiotic organism search optimisation technique’, IET Gener. Transm. Distrib., 2016, 10, (11), pp. 26812688.
    33. 33)
      • 33. Cheng, M.Y., Prayogo, D., Tran, D.H.: ‘Optimizing multiple-resources leveling in multiple projects using discrete symbiotic organisms search’, J. Comput. Civil Eng., 2015, 30, (3), pp. 19.
    34. 34)
      • 34. Cheng, M.-Y., Chiu, C.-K., Chiu, Y.-F., et al: ‘SOS optimization model for bridge life cycle risk evaluation and maintenance strategies’, J. Chin. Inst. Civil. Hydraul. Eng., 2014, 26, (4), pp. 293308.
    35. 35)
      • 35. Panda, A., Pani, S.: ‘A symbiotic organisms search algorithm with adaptive penalty function to solve multi-objective constrained optimization problems’, Appl. Soft Comput., 2016, 46, pp. 344360.
    36. 36)
      • 36. Tran, D.H., Cheng, M.Y., Prayogo, D.: ‘A novel multiple objective symbiotic organisms search (MOSOS) for time–cost–labor utilization tradeoff problem’, Knowl. Based Syst., 2016, 94, pp. 132145.
    37. 37)
      • 37. Secui, D.C.: ‘A modified symbiotic organisms search algorithm for large scale economic dispatch problem with valve-point effects’, Energy, 2016, 113, pp. 366384.
    38. 38)
      • 38. Abdullahi, M., Ngadi, M.A., Abdulhamid, S.M.: ‘Symbiotic organism search optimization based task scheduling in cloud computing environment’, Future Gener. Comput. Syst., 2016, 56, pp. 640650.
    39. 39)
      • 39. Mahata, S., Saha, S.K., Kar, R., et al: ‘Optimal and accurate design of fractional order digital differentiator – an evolutionary approach’, IET Signal Process., 2017, 11, (2), pp. 181196.
    40. 40)
      • 40. Mahata, S., Saha, S.K., Kar, R., et al: ‘Optimal design of wideband digital integrators and differentiators using hybrid flower pollination algorithm’, Soft Comput., 2017, doi. 10.1007/s00500-017-2595-6.
    41. 41)
      • 41. Pal, P.S., Kar, R., Mandal, D., et al: ‘An efficient identification approach for stable and unstable nonlinear systems using colliding bodies optimization algorithm’, ISA Trans., 2015, 59, pp. 85104.
    42. 42)
      • 42. Derrac, J., Garcia, S., Hui, S., et al: ‘Analyzing convergence performance of evolutionary algorithms: a statistical approach’, Inf. Sci., 2014, 289, pp. 4158.
    43. 43)
      • 43. Abramowitz, M., Stegun, I.A.: ‘Handbook of mathematical functions’ (Dover Publications, New York, 1974).
    44. 44)
      • 44. Castillo-Garcia, F.J., Millan-Rodriguez, A.S., Feliu-Batlle, V., et al: ‘Fractional-order PI control of first order plants with guaranteed time specifications’, J. Appl. Math, 2015, 2013, (article ID 197186), pp. 111.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2017.0162
Loading

Related content

content/journals/10.1049/iet-cds.2017.0162
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address