Rigorous mathematical model of through-silicon via capacitance

Rigorous mathematical model of through-silicon via capacitance

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Through-silicon vias (TSVs) are a key technology for three-dimensional integrated circuits. As the integration of circuits increases, high temperature has a greater effect on the performance of the TSV interconnections. The metal–oxide semiconductor (MOS) effect is one of the most important temperature-dependent characteristics of a TSV. This study introduces the mathematical model of a TSV to predict the MOS effect more accurately. The thermal effect that varies due to the change in the TSV capacitance and depletion region can be modelled by the non-linear the Poisson equation including mobile charge carriers. In procedures to solve this equation, the proposed method considers not only the thermal effect of intrinsic carrier concentration and silicon bandgap energy but also the shift effect of the flat band voltage due to the Si–SiO2 interface charges. In addition, since it considers the minority carrier generation rate, which is dependent on the change of gate voltage, the MOS effect in a TSV can be explained more accurately using equations derived from these procedures. To verify the proposed mathematical model, comparison with the numerical method is carried out, and these results show that the proposed method is very accurate in explaining the MOS effect in a TSV.


    1. 1)
      • 1. Lu, J.Q.: ‘3-D hyperintegration and packaging technologies for micronano systems’, Proc. IEEE, 2009, 97, (1), pp. 1830.
    2. 2)
      • 2. Liu, C., Song, T., Cho, J., et al: ‘Full-chip TSV-to-TSV coupling analysis and optimization in 3D IC’. Proc. IEEE Design Autom. Conf., New York, NY, USA, January 2011, pp. 783788.
    3. 3)
      • 3. Kim, J., Pak, J.S., Cho, J., et al: ‘Highfrequency scalable electrical model and analysis of a through silicon via (TSV)’, IEEE Trans. Compon., Packag., Manuf. Technol., 2011, 1, (2), pp. 181195.
    4. 4)
      • 4. Han, K.J., Swaminathan, M., Bandyopadhyay, T.: ‘Electromagnetics modeling of through-silicon via (TSV) interconnections using cylindrical modal basis functions’, IEEE Trans. Adv. Packag., 2010, 33, (4), pp. 804817.
    5. 5)
      • 5. Kim, J., Choi, K., Lee, S., et al: ‘6–18 GHz reactive matched GaN MMIC power amplifiers with distributed L-C load matching’, J. Electromagn. Eng. Sci., 2016, 16, (1), pp. 4451.
    6. 6)
      • 6. Hu, S., Wang, L., Xiong, Y.-Z., et al: ‘TSV technology for millimeter-wave and terahertz design and applications’, IEEE Trans. Compon., Packag., Manuf. Technol., 2011, 1, (2), pp. 260267.
    7. 7)
      • 7. Cheng, T.-Y., Wang, C.-D., Chiou, Y.-P., et al: ‘A new macro-πmodel for through-silicon vias on 3-D IC using conformal mapping method’, IEEE Trans. Microw. Compon. Lett., 2012, 22, (6), pp. 303305.
    8. 8)
      • 8. Kim, K., Hwang, K., Ahn, S.: ‘An improved 100 GHz equivalent circuit model of a through silicon via with substrate current loop’, IEEE Microw. Wirel. Compon. Lett., 2016, 26, (6), pp. 425427.
    9. 9)
      • 9. Todri, A., Kundu, S., Girard, P., et al: ‘A study of tapered 3-D TSVs for power and thermal integrity’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2013, 21, (2), pp. 306319.
    10. 10)
      • 10. Bandyopadhyay, T., Han, K.J., Chung, D., et al: ‘Rigorous electrical modeling of through silicon vias (TSVs) with MOS capacitance effects’, IEEE Trans. Compon. Packag. Manufac. Technol., 2011, 1, (6), pp. 893903.
    11. 11)
      • 11. Piersanti, S., de Paulis, F., Orlandi, A., et al: ‘Transient analysis of TSV equivalent circuit considering nonlinear MOS capacitance effects’, IEEE Trans. Electromagn. Compat., 2015, 57, (5), pp. 12161225.
    12. 12)
      • 12. Fang, R., Sun, X., Miao, M., et al: ‘Characteristics of coupling capacitance between signal-ground TSVs considering MOS effect in silicon interposers’, IEEE Trans. Electron Devices, 2015, 62, (12), pp. 41614168.
    13. 13)
      • 13. Bandyopadhyay, T., Chatterjee, R., Chung, D., et al: ‘Electrical modeling of through silicon and package vias’. Proc. IEEE Int. Conf. 3-D System Integration, San Francisco, CA, September 2009, pp. 2830.
    14. 14)
      • 14. Bandyopadhyay, T., Chatterjee, R., Chung, D., et al: ‘Electrical modeling of annular and co-axial TSVs considering MOS capacitance effects’. Proc. IEEE 18th Conf. Electrical Performance of Electronic Packaging and Systems, Portland, OR, October 2009, pp. 117120.
    15. 15)
      • 15. Xu, C., Li, H., Suaya, R., et al: ‘Compact AC modeling and performance analysis of through-silicon vias in 3-D ICs’, IEEE Trans. Electron Devices, 2010, 57, (12), pp. 34053417.
    16. 16)
      • 16. Katti, G., Stucchi, M., De Meyer, K., et al: ‘Electrical modeling and characterization of through silicon via for 3-D ICs’, IEEE Trans. Electron Devices, 2010, 57, (1), pp. 256262.
    17. 17)
      • 17. Katti, G., Stucchi, M., Velenis, D., et al: ‘Temperature-dependent modeling and characterization of through-silicon via capacitance’, IEEE Electron Device Lett., 2011, 32, (4), pp. 563565.
    18. 18)
      • 18. Zhao, W., Zheng, J., Chen, S., et al: ‘Transient analysis of through-silicon vias in floating silicon substrate’, IEEE Trans. Electron Devices, 2017, 59, (1), pp. 207216.
    19. 19)
      • 19. Sproul, A., Green, M.A.: ‘Improved value for the silicon intrinsic carrier concentration from 275 to 375 K’, J. Appl. Phys., 1991, 70, p. 846.
    20. 20)
      • 20. Du, X.Z., Frye, C.D., Edgar, J.H., et al: ‘Temperature dependence of the energy bandgap of two-dimensional hexagonal boron nitride probed by excitonic photoluminescence’, J. Appl. Phys., 2014, 115, p. 053503.
    21. 21)
      • 21. Sze, S.M., Ng, K.K.: ‘Physics of semiconductor devices’ (Wiley-Interscience, New Jersey, 2007, 3rd edn.), pp. 8590.
    22. 22)
      • 22. Arora, N.: ‘MOSFET models for VLSI circuit simulation’ (Springer-Verlag, New York, 2007), pp. 138155.

Related content

This is a required field
Please enter a valid email address