http://iet.metastore.ingenta.com
1887

Design of rectenna series-association circuits for radio frequency energy harvesting in CMOS FD-SOI 28 nm

Design of rectenna series-association circuits for radio frequency energy harvesting in CMOS FD-SOI 28 nm

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Series-connected rectenna associations are proposed to improve the harvesting performance of conventional rectenna circuits by recovering power from different directions. With an available input power of −20 dBm, post-layout simulations evaluated the total output power of four series-connected rectennas designed in Complementary Metal Oxide Semiconductor Fully Depleted Silicon On Insulator (CMOS FD-SOI) 28 nm technology, to 14 µW at maximum power point (MPP), while the post-layout simulation of a single rectenna yields 5 µW at the same input power level. However, the rectenna association performance may be significantly degraded when dealing with different input power levels among rectennas. Therefore, a passive bypass circuit has been added at the output of the series association to short-circuit the weakest rectenna. The proposed design is cost-effective since there is a negligible silicon penalty and no additional power losses. In the designed four series-connected rectenna association, the total output power is 7 µW at MPP with the bypass circuit when the strongest and the weakest rectennas receive −20 and −35 dBm, respectively. Also, thanks to the bypass circuit, the efficiency of the rectenna association and the ratio of maximum achieved power are improved by, respectively, 10 and 20%.

References

    1. 1)
      • H. Sun , W. Geyi .
        1. Sun, H., Geyi, W.: ‘A new rectenna with all-polarization-receiving capability for wireless power transmission’, IEEE Antennas Wirel. Propag. Lett., 2016, 15, pp. 814817.
        . IEEE Antennas Wirel. Propag. Lett. , 814 - 817
    2. 2)
      • P. Lu , X.-S. Yang , J.-L., Li .
        2. Lu, P., Yang, X.-S., Li, J.-L.,, et al: ‘Polarization reconfigurable broadband rectenna with tunable matching network for microwave power transmission’, IEEE Trans. Antennas Propag., 2016, 64, (3), pp. 11361141.
        . IEEE Trans. Antennas Propag. , 3 , 1136 - 1141
    3. 3)
      • T. Oishi , N. Kawano , M. Kasu .
        3. Oishi, T., Kawano, N., Kasu, M.: ‘Demonstration of RF-DC conversion using dual diode rectifier circuit for rectenna with diamond Schottky barrier diodes’. Compound Semiconductor Week, Toyama, Japan, June 2016.
        . Compound Semiconductor Week
    4. 4)
      • V. Marian , B. Allard , C., Vollaire .
        4. Marian, V., Allard, B., Vollaire, C.,, et al: ‘Strategy for microwave energy harvesting from ambient field or a feeding source’, IEEE Trans. Power Electron., 2012, 27, (11), pp. 44814491.
        . IEEE Trans. Power Electron. , 11 , 4481 - 4491
    5. 5)
      • H.J. Visser , A.C.F. Reniers , J.A.C. Theeuwes .
        5. Visser, H.J., Reniers, A.C.F., Theeuwes, J.A.C.: ‘Ambient RF energy scavenging: GSM and WLAN power density measurements’. 38th European Microwave Conf., Amsterdam, The Netherlands, October 2008, pp. 721724.
        . 38th European Microwave Conf. , 721 - 724
    6. 6)
      • T. Umeda , H. Yoshida , S. Sekine .
        6. Umeda, T., Yoshida, H., Sekine, S., et al: ‘A 950 MHz rectifier for sensor networks with 10-m distance’, IEEE J. Solid-State Circuits, 2006, 41, (1), pp. 3541.
        . IEEE J. Solid-State Circuits , 1 , 35 - 41
    7. 7)
      • H. Nakamato , D. Yamazaki , T., Yamamoto .
        7. Nakamato, H., Yamazaki, D., Yamamoto, T.,, et al: ‘A passive UHF RF identification CMOS tag IC using ferroelectric RAM in 0.35-μm technology’, IEEE J. Solid-State Circuits, 2007, 42, (1), pp. 101110.
        . IEEE J. Solid-State Circuits , 1 , 101 - 110
    8. 8)
      • A. Shameli , A. Safarian , A., Rofougaran .
        8. Shameli, A., Safarian, A., Rofougaran, A.,, et al: ‘Power harvester design for passive UHF RFID tag using a voltage boosting technique’, IEEE Trans. Microw. Theory Tech., 2007, 55, (6), pp. 10891097.
        . IEEE Trans. Microw. Theory Tech. , 6 , 1089 - 1097
    9. 9)
      • J. Yi , W.-H. Ki , C.-Y. Tsui .
        9. Yi, J., Ki, W.-H., Tsui, C.-Y.: ‘Analysis and design strategy of UHF micro-power CMOS rectifiers for micro-sensor and RFID applications’, IEEE Trans. Circuits Syst., 2007, 54, (1), pp. 153166.
        . IEEE Trans. Circuits Syst. , 1 , 153 - 166
    10. 10)
      • T. Le , K. Mayaram , T. Fieze .
        10. Le, T., Mayaram, K., Fieze, T.: ‘Efficient far-field radio frequency energy harvesting for passively powered sensor networks’, IEEE J. Solid-State Circuits, 2008, 43, (5), pp. 12871302.
        . IEEE J. Solid-State Circuits , 5 , 1287 - 1302
    11. 11)
      • D. Ferreira , L. Sismeiro , A., Ferreira .
        11. Ferreira, D., Sismeiro, L., Ferreira, A.,, et al: ‘Hybrid FSS and rectenna design for wireless power harvesting’, IEEE Trans. Antennas Propag., 2016, 64, (5), pp. 20382042.
        . IEEE Trans. Antennas Propag. , 5 , 2038 - 2042
    12. 12)
      • B. Kapilevich , V. Shashkin , B., Litvak .
        12. Kapilevich, B., Shashkin, V., Litvak, B.,, et al: ‘W-band rectenna coupled with low-barrier mott diode’, IEEE Microw. Wirel. Compon. Lett., 2016, 26, (8), pp. 637639.
        . IEEE Microw. Wirel. Compon. Lett. , 8 , 637 - 639
    13. 13)
      • C. Song , Y. Huang , P. Carter .
        13. Song, C., Huang, Y., Carter, P.: ‘A novel six-band dual CP rectenna using improved impedance matching technique for ambient RF energy harvesting’, IEEE Trans. Antennas Propag., 2016, 64, (7), pp. 31603171.
        . IEEE Trans. Antennas Propag. , 7 , 3160 - 3171
    14. 14)
      • J. Hagerty , F. Helmbrecht , W., McCalpin .
        14. Hagerty, J., Helmbrecht, F., McCalpin, W.,, et al: ‘Recycling ambient microwave energy with broad-band rectenna arrays’, IEEE Trans. Microw. Theory Tech., 2004, 52, (3), pp. 10141024.
        . IEEE Trans. Microw. Theory Tech. , 3 , 1014 - 1024
    15. 15)
      • J. Zbitou , M. Latrach , S. Toutain .
        15. Zbitou, J., Latrach, M., Toutain, S.: ‘Hybrid rectenna and monolithic integrated zero-bias microwave rectifier’, IEEE Trans. Microw. Theory Tech., 2006, 54, (1), pp. 147152.
        . IEEE Trans. Microw. Theory Tech. , 1 , 147 - 152
    16. 16)
      • V. Marian , C. Vollaire , J., Verdier .
        16. Marian, V., Vollaire, C., Verdier, J.,, et al: ‘An alternative energy source for low power autonomous sensors’. 5th European Conf. Antennas Propagation, Rome, Italy, April 2011, pp. 405409.
        . 5th European Conf. Antennas Propagation , 405 - 409
    17. 17)
      • G. Monti , L. Tarricone , M. Spartano .
        17. Monti, G., Tarricone, L., Spartano, M.: ‘X-band planar rectenna’, IEEE Antennas Wirel. Propag. Lett., 2011, 10, pp. 11161119.
        . IEEE Antennas Wirel. Propag. Lett. , 1116 - 1119
    18. 18)
      • N. Degrenne , V. Marian , C., Vollaire .
        18. Degrenne, N., Marian, V., Vollaire, C.,, et al: ‘Voltage reversal in unbalanced rectenna association’, IEEE Antennas Wirel. Propag. Lett., 2012, 11, pp. 941944.
        . IEEE Antennas Wirel. Propag. Lett. , 941 - 944
    19. 19)
      • N. Shinohara , H. Matsumoto .
        19. Shinohara, N., Matsumoto, H.: ‘Dependence of dc output of a rectenna array on the method of interconnection of its array elements’, Electr. Eng. Jpn., 1998, 125, (1), pp. 917.
        . Electr. Eng. Jpn. , 1 , 9 - 17
    20. 20)
      • F. Khaled , O. Ondel , B. Allard .
        20. Khaled, F., Ondel, O., Allard, B.: ‘Optimal energy harvesting from serially connected microbial fuel cells’, IEEE Trans. Ind. Electron., 2015, 62, (6), pp. 35083515.
        . IEEE Trans. Ind. Electron. , 6 , 3508 - 3515
    21. 21)
      • F. Khaled , I. Kharrat , T.-P., Vuong .
        21. Khaled, F., Kharrat, I., Vuong, T.-P.,, et al: ‘Optimal energy harvesting from a stack of serially-connected rectennas’. Journées Scientifiques URSI-France, Rennes, France, Mars 2016, pp. 1721.
        . Journées Scientifiques URSI-France , 17 - 21
    22. 22)
      • T. Paing , E. Falkenstein , R., Zane .
        22. Paing, T., Falkenstein, E., Zane, R.,, et al: ‘Custom IC for ultra-low power RF energy harvesting’. 25th Annual IEEE Applied Power Electronics Conf. (APEC), Washington, DC, USA, February 2009, pp. 12391245.
        . 25th Annual IEEE Applied Power Electronics Conf. (APEC) , 1239 - 1245
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2017.0119
Loading

Related content

content/journals/10.1049/iet-cds.2017.0119
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address