access icon free Design of rectenna series-association circuits for radio frequency energy harvesting in CMOS FD-SOI 28 nm

Series-connected rectenna associations are proposed to improve the harvesting performance of conventional rectenna circuits by recovering power from different directions. With an available input power of −20 dBm, post-layout simulations evaluated the total output power of four series-connected rectennas designed in Complementary Metal Oxide Semiconductor Fully Depleted Silicon On Insulator (CMOS FD-SOI) 28 nm technology, to 14 µW at maximum power point (MPP), while the post-layout simulation of a single rectenna yields 5 µW at the same input power level. However, the rectenna association performance may be significantly degraded when dealing with different input power levels among rectennas. Therefore, a passive bypass circuit has been added at the output of the series association to short-circuit the weakest rectenna. The proposed design is cost-effective since there is a negligible silicon penalty and no additional power losses. In the designed four series-connected rectenna association, the total output power is 7 µW at MPP with the bypass circuit when the strongest and the weakest rectennas receive −20 and −35 dBm, respectively. Also, thanks to the bypass circuit, the efficiency of the rectenna association and the ratio of maximum achieved power are improved by, respectively, 10 and 20%.

Inspec keywords: silicon-on-insulator; passive networks; energy harvesting; elemental semiconductors; silicon; radiofrequency integrated circuits; maximum power point trackers; CMOS integrated circuits; rectennas

Other keywords: power 7 muW; efficiency 10 percent; MPP; size 28 nm; maximum power point; power 14 muW; Si; passive bypass circuit; radiofrequency energy harvesting; post-layout simulation; power 5 muW; series-connected rectenna series-association circuit; efficiency 20 percent; CMOS FD-SOI technology

Subjects: CMOS integrated circuits; Passive filters and other passive networks; Microwave integrated circuits; DC-DC power convertors; Single antennas; Power electronics, supply and supervisory circuits; Energy harvesting

References

    1. 1)
      • 14. Hagerty, J., Helmbrecht, F., McCalpin, W.,, et al: ‘Recycling ambient microwave energy with broad-band rectenna arrays’, IEEE Trans. Microw. Theory Tech., 2004, 52, (3), pp. 10141024.
    2. 2)
      • 18. Degrenne, N., Marian, V., Vollaire, C.,, et al: ‘Voltage reversal in unbalanced rectenna association’, IEEE Antennas Wirel. Propag. Lett., 2012, 11, pp. 941944.
    3. 3)
      • 8. Shameli, A., Safarian, A., Rofougaran, A.,, et al: ‘Power harvester design for passive UHF RFID tag using a voltage boosting technique’, IEEE Trans. Microw. Theory Tech., 2007, 55, (6), pp. 10891097.
    4. 4)
      • 3. Oishi, T., Kawano, N., Kasu, M.: ‘Demonstration of RF-DC conversion using dual diode rectifier circuit for rectenna with diamond Schottky barrier diodes’. Compound Semiconductor Week, Toyama, Japan, June 2016.
    5. 5)
      • 11. Ferreira, D., Sismeiro, L., Ferreira, A.,, et al: ‘Hybrid FSS and rectenna design for wireless power harvesting’, IEEE Trans. Antennas Propag., 2016, 64, (5), pp. 20382042.
    6. 6)
      • 19. Shinohara, N., Matsumoto, H.: ‘Dependence of dc output of a rectenna array on the method of interconnection of its array elements’, Electr. Eng. Jpn., 1998, 125, (1), pp. 917.
    7. 7)
      • 20. Khaled, F., Ondel, O., Allard, B.: ‘Optimal energy harvesting from serially connected microbial fuel cells’, IEEE Trans. Ind. Electron., 2015, 62, (6), pp. 35083515.
    8. 8)
      • 2. Lu, P., Yang, X.-S., Li, J.-L.,, et al: ‘Polarization reconfigurable broadband rectenna with tunable matching network for microwave power transmission’, IEEE Trans. Antennas Propag., 2016, 64, (3), pp. 11361141.
    9. 9)
      • 10. Le, T., Mayaram, K., Fieze, T.: ‘Efficient far-field radio frequency energy harvesting for passively powered sensor networks’, IEEE J. Solid-State Circuits, 2008, 43, (5), pp. 12871302.
    10. 10)
      • 21. Khaled, F., Kharrat, I., Vuong, T.-P.,, et al: ‘Optimal energy harvesting from a stack of serially-connected rectennas’. Journées Scientifiques URSI-France, Rennes, France, Mars 2016, pp. 1721.
    11. 11)
      • 22. Paing, T., Falkenstein, E., Zane, R.,, et al: ‘Custom IC for ultra-low power RF energy harvesting’. 25th Annual IEEE Applied Power Electronics Conf. (APEC), Washington, DC, USA, February 2009, pp. 12391245.
    12. 12)
      • 6. Umeda, T., Yoshida, H., Sekine, S., et al: ‘A 950 MHz rectifier for sensor networks with 10-m distance’, IEEE J. Solid-State Circuits, 2006, 41, (1), pp. 3541.
    13. 13)
      • 4. Marian, V., Allard, B., Vollaire, C.,, et al: ‘Strategy for microwave energy harvesting from ambient field or a feeding source’, IEEE Trans. Power Electron., 2012, 27, (11), pp. 44814491.
    14. 14)
      • 12. Kapilevich, B., Shashkin, V., Litvak, B.,, et al: ‘W-band rectenna coupled with low-barrier mott diode’, IEEE Microw. Wirel. Compon. Lett., 2016, 26, (8), pp. 637639.
    15. 15)
      • 16. Marian, V., Vollaire, C., Verdier, J.,, et al: ‘An alternative energy source for low power autonomous sensors’. 5th European Conf. Antennas Propagation, Rome, Italy, April 2011, pp. 405409.
    16. 16)
      • 13. Song, C., Huang, Y., Carter, P.: ‘A novel six-band dual CP rectenna using improved impedance matching technique for ambient RF energy harvesting’, IEEE Trans. Antennas Propag., 2016, 64, (7), pp. 31603171.
    17. 17)
      • 5. Visser, H.J., Reniers, A.C.F., Theeuwes, J.A.C.: ‘Ambient RF energy scavenging: GSM and WLAN power density measurements’. 38th European Microwave Conf., Amsterdam, The Netherlands, October 2008, pp. 721724.
    18. 18)
      • 1. Sun, H., Geyi, W.: ‘A new rectenna with all-polarization-receiving capability for wireless power transmission’, IEEE Antennas Wirel. Propag. Lett., 2016, 15, pp. 814817.
    19. 19)
      • 7. Nakamato, H., Yamazaki, D., Yamamoto, T.,, et al: ‘A passive UHF RF identification CMOS tag IC using ferroelectric RAM in 0.35-μm technology’, IEEE J. Solid-State Circuits, 2007, 42, (1), pp. 101110.
    20. 20)
      • 15. Zbitou, J., Latrach, M., Toutain, S.: ‘Hybrid rectenna and monolithic integrated zero-bias microwave rectifier’, IEEE Trans. Microw. Theory Tech., 2006, 54, (1), pp. 147152.
    21. 21)
      • 9. Yi, J., Ki, W.-H., Tsui, C.-Y.: ‘Analysis and design strategy of UHF micro-power CMOS rectifiers for micro-sensor and RFID applications’, IEEE Trans. Circuits Syst., 2007, 54, (1), pp. 153166.
    22. 22)
      • 17. Monti, G., Tarricone, L., Spartano, M.: ‘X-band planar rectenna’, IEEE Antennas Wirel. Propag. Lett., 2011, 10, pp. 11161119.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2017.0119
Loading

Related content

content/journals/10.1049/iet-cds.2017.0119
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading